Особенности миелодиспластического синдрома и острой миелоидной лейкемии у детей, обусловленных лечением острой лимфобластной лейкемии: собственные наблюдения

Авторы

  • O. I. Dorosh КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine https://orcid.org/0000-0002-5919-9371
  • A. M. Myh КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine
  • A. I. Stepanyuk КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine https://orcid.org/0000-0002-1639-0926
  • O. I. Kozlova КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine https://orcid.org/0000-0003-4252-3478
  • L. L. Skoropad КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine https://orcid.org/0000-0003-1100-6611
  • L. P. Seredych КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина, Ukraine https://orcid.org/0000-0002-2586-2518
  • I. P. Tsymbalyuk-Voloshyn КЗ ЛОР «Западноукраиский специализированный детский мединский центр», г. Львов, Украина Львовский национальный медицинский университет имени Данила Галицкого, Украина, Ukraine https://orcid.org/0000-0003-3752-2630

DOI:

https://doi.org/10.15574/SP.2018.92.69

Ключевые слова:

острая лимфобластная лейкемия, индуцированные лечением миелодиспластический синдром и острая миелоидная лейкемия, вторичные неоплазии, дети

Аннотация

Представлены два клинических случая вторичных, вызванных лечением гемобластозов, неоплазий — treatment-related myelodysplastic syndrome (t-MDS)/treatment-related acute myeloid leukemia (AML) — t-MDS/t-AML в сравнении с ранее опубликованными данными других исследователей. Два мальчика, у которых была первично диагностирована острая лимфобластная лейкемия (ОЛЛ), получали лечение по программе ALL IC-BFM-2002 соответственно принадлежности к терапевтическим группам среднего и высокого риска (ГСР, ГВР). У больного из ГСР возник вторичный миелодиспластический синдром (МДС) с моносомией 7, который впоследствии трансформировался во вторичную острую миелоидную лейкемию (ОМЛ); после алогенной трансплантации гемопоэтических клеток (ало-ТГПСК) пуповинной крови возникли осложнения, от которых пациент умер. У другого больного из ГВР зарегистрирована вторичная ОМЛ с транслокацией t(9.11) (p22; q23). Проведена ало-ТГПСК; пациент пребывает в клинико-гематологической ремисии ОЛЛ 77 месяцев и t-AML — 49 месяцев. t-MDS/t-AML регистрировались на фоне поддерживающей химиотерапии ОЛЛ через 20 месяцев у лиц мужского пола при наличии хромосомных аномалий, имели предрасположенность к прогрессированию во время стандартой химиотерапии и развитию тяжелых инфекционно-токсических осложнений на фоне цитопении. Трансплантация гемопоэтических клеток является единственным лечебным режимом для пациентов с t-MDS/t-AML.

Библиографические ссылки

Bebeshko VH, Klymenko SV. (2002). Biological features and clinical course of secondary leukemia. Onkolohyia. 4(3): 217-224.

Domracheva EV, Aseeva EA, Neverova AL et al. (2011). Leukemia and myelodysplastic syndromes that occurred after anticancer therapy: results of 16 years of observation. Klynycheskaia onkohematolohyia. 4(2): 120-133.

Alfonso Quintas-Cardama, Naval Daver, Hawk Kim et al. (2014). A prognostic model of therapy related myelodysplastic syndrome for predicting survival and transplantation to acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 14(5): 401—410. https://doi.org/10.1016/j.clml.2014.03.001; PMid:24875590 PMCid:PMC4167474

Anderson JE, Gooley TA, Schoch G et al. (1997). Stem cell transplantation for secondary acute myeloid leukemia: evaluation of transplantation as initial therapy or following induction chemotherapy. Blood. 89: 2578—2585. PMid:9116305

Aung L, Khyne T, Yeoh AE et al. (2009). A report from the Singapore Childhood Cancer Survivor Study (SG-CCSS): a multi-institutional collaborative study on long$term survivors of childhood cancer, initial analysis reporting for the SG-CCSS. Ann Acad Med Singapore. 38(8): 684—689. PMid:19736571

Barry EV, Vrooman LM, Dahlberg SE et al. (2008). Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 26(7): 1106—1111. https://doi.org/10.1200/JCO.2007.12.2481; PMid:18309945

Bhatia S. (2013). Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 40(6): 666—675. https://doi.org/10.1053/j.seminoncol.2013.09.013; PMid:24331189 PMCid:PMC3867743

Bloomfield CD, Archer KJ, Mrozek K et al. (2002). 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer. 33(4): 362—378. https://doi.org/10.1002/gcc.10046; PMid:11921271

Boice JDJr, Fraumeni JFJr, Tucker MA et al. (1984). Cancer risk following treatment of childhood cancer. In JDJr Boice, FJJr Traumeni (Eds). Radiation carcinogenesis: epidemiology and biological significance. New York: Raven Press: 211—224.

Brunning RD, Matutes E, Flandrin G et al. (2001). Acute myeloid leukaemias and myelodysplastic syndromes, therapy related. In ES Jaffe, NL Harris, H Stein et al. (Eds.). World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press: 89—91.

Chandra P, Luthra R, Zuo Z et al. (2010). Acute myeloid leukemia with t(9;11) (p21$22;q23): common properties of dysregulated ras pathway signaling and genomic progression characterize de novo and therapy$related cases. Am J Clin Pathol. 133(5): 686—693. https://doi.org/10.1309/AJCPGII1TT4NYOGI; PMid:20395514

Cornelissen JJ, Breems D, van Putten WL et al. (2012). Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. J Clin Oncol. 30: 2140—2146. https://doi.org/10.1200/JCO.2011.39.6499; PMid:22564995

Dalton VMK, Gelber RD, Li F et al. (1998). Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J Clin Oncol. 16: 2848—2853. https://doi.org/10.1200/JCO.1998.16.8.2848; PMid:9704738

De Lima M, Parmar S, Chen J et al. (2012). Low dose azacitidine (AZA) reduces the incidence of chronic graft-versus-host disease (cGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Blood. 120: 742.

Essig S, Li Q, Chen Y et al. (2014). Risk of late effects of treatment in children newly diagnosed with standard$risk acute lymphoblastic leukaemia: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 15(8): 841—851. https://doi.org/10.1016/S1470-2045(14)70265-7

Estey E, Dohner H (2006). Acute myeloid leukaemia. Lancet. 368(9550): 1894—1907. https://doi.org/10.1016/S0140-6736(06)69780-8

Felice MS, Rossi JG, Alonso CN et al. (2017). Second neoplasms in children following a treatment for acute leukemia and/or lymphoma: 29 years of experience in a single Institution in Argentina. J Pediatr Hematol Oncol. 39(8): 406—412. https://doi.org/10.1097/MPH.0000000000000971; PMid:28945661

Fisher KE, Hsu AP, Williams CL et al. (2017). Somatic mutations in children with GATA2-associated myelodysplastic syndrome who lack other features of GATA2 deficiency. Blood Adv. 28; 1(7): 443—448.

Gaynon PS, Angiolillo AL, Carroll WL et al.; Children's Oncology Group (2010). Long$term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983—2002: a Children's Oncology Group Report. Leukemia. 24(2):285—297. https://doi.org/10.1038/leu.2009.262; PMid:20016531 PMCid:PMC2906139

Godley LA, Larson RA. (2002). The syndrome of therapy$related myelodysplasia and myeloid leukemia. In JM Bennett (Editor). The myelodysplastic syndromes: pathobiology and clinical management. New York: Marcel Dekker, Inc:139—176.

Godley LA, Larson RA. (2008). Therapy$related myeloid leukemia. Semin Oncol. 35(4):418—429. https://doi.org/10.1053/j.seminoncol.2008.04.012; PMid:18692692 PMCid:PMC2600445

Greene MH, Harris EL, Gershenson DM et al. (1986). Melphalan may be a more potent leukemogen than cyclophosphamide. Ann Intern Med. 105:360—367. https://doi.org/10.7326/0003-4819-105-3-360; PMid:3740675

Haddy TB, Mosher RB, Reaman GH. (2009). Late effects in long-term survivors after treatment for childhood acute leukemia. Clin Pediatr (Phila). 48(6):601—608. https://doi.org/10.1177/0009922809332680; PMid:19264722

Heim S. (1992). Cytogenetic findings in primary and secondary MDS. Leuk Res.16(1):43—6. https://doi.org/10.1016/0145-2126(92)90098-R

Ishida Y, Maeda M, Urayama KY et al.; QOL committee of Tokyo Children's Cancer Study Group (TCCSG). (2014). Secondary cancers among children with acute lymphoblastic leukaemia treated by the Tokyo Children's Cancer Study Group protocols: a retrospective cohort study. Br J Haematol. 164(1):101—112. https://doi.org/10.1111/bjh.12602; PMid:24116892

Jaime-Perez JC, Lopez-Razo ON, Garcia-Arellano G et al. (2016). Results of treating childhood acute lymphoblastic leukemia in a low-middle income country: 10 year experience in Northeast Mexico. Arch Med Res.47(8):668—676. https://doi.org/10.1016/j.arcmed.2017.01.004; PMid:28476194

Koh KN, Yoo KH, Im HJ et al. (2016). Characteristics and outcomes of second malignant neoplasms after childhood cancer treatment: multi-center retrospective survey. J Korean Med Sci.31(8):1254—1261. https://doi.org/10.3346/jkms.2016.31.8.1254; PMid:27478336 PMCid:PMC4951555

Kollmannsberger C, Hartmann JT, Kanz L, Bokemeyer C. (1998). Risk of secondary myeloid leukemia and myelodysplastic syndrome following standard-dose chemotherapy or high-dose chemotherapy with stem cell support in patients with potentially curable malignancies. J Cancer Res Clin Oncol. 124(3—4):207—14. https://doi.org/10.1007/s004320050156; PMid:9619748

Krishnan A, Bhatia S, Slovak ML et al. (2000). Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood. Mar 1. 95(5):1588—93.

Levinsen M, Rotevatn EO, Rosthoj S et al.; Nordic Society of Paediatric Haematology, Oncology. (2014). Pharmacogenetically based dosing of thiopurines in childhood acute lymphoblastic leukemia: influence on cure rates and risk of second cancer. Pediatr Blood Cancer. 61(5):797—802. https://doi.org/10.1002/pbc.24921; PMid:24395436

Lo Nigro L, Bottino D, Panarello C et al. (2003). Prognostic impact of t(9;11) in childhood acute myeloid leukemia (AML). Leukemia. 17:636—656. https://doi.org/10.1038/sj.leu.2402846; PMid:12646956

Loning L, Zimmermann M, Reiter A et al. (2000). Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial therapy. Blood. 95: 2770—2775. PMid:10779419

Maniar TN, Braunstein I, Keefe S et al. (2007). Childhood ALL and second neoplasms. Cancer Biol Ther. 6(10):1525—1531. https://doi.org/10.4161/cbt.6.10.4928; PMid:17952026

Maung SW, Burke C, Hayde J et al. (2017). A review of therapy-related myelodysplastic syndromes and acute myeloid leukaemia (t-MDS/AML) in Irish patients: a single centre experience. Hematology. 22(6):341—346. https://doi.org/10.1080/10245332.2017.1286539; PMid:28196450

Mauritzson N, Albin M, Rylander L et al. (2002). Pooled analysis of clinical and cytogenetic features in treatment$related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976—1993 and on 5098 unselected cases reported in the literature 1974—2001. Leukemia. 16(12):2366—2378. https://doi.org/10.1038/sj.leu.2402713; PMid:12454741

Mitchell C, Richards S, Harrison CJ, Eden T. (2010). Long-term follow-up of the United Kingdom medical research council protocols for childhood acute lymphoblastic leukaemia, 1980—2001. Leukemia. 24(2):406—418. https://doi.org/10.1038/leu.2009.256; PMid:20010621 PMCid:PMC2820452

Mody R, Li S, Dover DC et al. (2008). Twenty-five-year follow$up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood. 111(12): 5515—5523. https://doi.org/10.1182/blood-2007-10-117150; PMid:18334672 PMCid:PMC2424150

Neglia JP, Meadows AT, Robison LL et al. (1991). Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med. 325:1330—1336. https://doi.org/10.1056/NEJM199111073251902; PMid:1922234

Ng AK, Kenney LB, Gilbert ES, Travis LB. (2010). Secondary malignancies across the age spectrum. Semin Radiat Oncol. 20(1): 67—78. https://doi.org/10.1016/j.semradonc.2009.09.002; PMid:19959033 PMCid:PMC3857758

Nielsen SN, Eriksson F, Rosthoej S et al. (2017). Children with low-risk acute lymphoblastic leukemia are at highest risk of second cancers. Pediatr Blood Cancer. 64(10). https://doi.org/10.1002/pbc.26518

Nygaard R, Garwicz S, Haldorsen T et al. (1991). Second malignant neoplasms in patients treated for childhood leukemia. Acta Paediatr Scand. 80:1220—1228. https://doi.org/10.1111/j.1651-2227.1991.tb11812.x; PMid:1785295

Olney HJ, Mitelman F, Johansson B et al. (2002). Unique balanced chromosome abnormalities in treatment-related myelodysplastic syndromes and acute myeloid leukemia: report from an international workshop. Genes Chromosomes Cancer. 33: 413—423. https://doi.org/10.1002/gcc.10045; PMid:11921275

Ornstein MC, Mukherjee S, Mohan S et al. (2014). Predictive factors for latency period and a prognostic model for survival in patients with therapy-related AML. Am. J. Hematol. 89(2): 168—173. https://doi.org/10.1002/ajh.23605; PMid:24123154

Paganin M, Buldini B, Germano G et al. (2016). A case of T-cell acute lymphoblastic leukemia relapsed as myeloid acute leukemia. Pediatr Blood Cancer.63(9):1660—1663. https://doi.org/10.1002/pbc.26054; PMid:27149388

Pedersen-Bjergaard J, Andersen MK, Christiansen DH. (2000). Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 95(11):3273—3279. PMid:10828005

Perkins SM, Dewees T, Shinohara ET, Reddy MM, Frangoul H. (2013). Risk of subsequent malignancies in survivors of childhood leukemia. J Cancer Surviv. 7(4):544—550. https://doi.org/10.1007/s11764-013-0292-8; PMid:23749687

Platzbecker U, Wermke M, Radke J et al. (2012). Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia.26:381—389. https://doi.org/10.1038/leu.2011.234; PMid:21886171 PMCid:PMC3306138

Pratt CB, George SL, Hannock ML et al. (1988). Second malignant neoplasms in survivors of childhood acute lymphocytic leukemia [abstract]. Pediatr Res. 23:345.

Pui CH, Behm FG, Raimondi SC et al. (1989). Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med. 321(3):136—142. https://doi.org/10.1056/NEJM198907203210302; PMid:2787477

Pui CH, Campana D, Pei D et al. (2009). Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 360(26): 2730—2741. https://doi.org/10.1056/NEJMoa0900386; PMid:19553647 PMCid:PMC2754320

Pui CH, Pei D, Campana D et al. (2014). A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia. 28(12):2336—2343. https://doi.org/10.1038/leu.2014.142; PMid:24781017 PMCid:PMC4214904

Renard M, Suciu S, Bertrand Y et al.; EORTC Children Leukaemia Group (CLG). (2011). Second neoplasm in children treated in EORTC 58881 trial for acute lymphoblastic malignancies: low incidence of CNS tumours. Pediatr Blood Cancer. 57(1):119—125. https://doi.org/10.1002/pbc.23083; PMid:21412967

Rihani R, Bazzeh F, Faqih N, Sultan I. (2010). Secondary hematopoietic malignancies in survivors of childhood cancer: an analysis of 111 cases from the Surveillance, Epidemiology, and End Result-9 registry. Cancer. 116(18): 4385—4394. https://doi.org/10.1002/cncr.25313; PMid:20549819

Rowley JD, Olney HJ. (2002). International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer. 33:331—345. https://doi.org/10.1002/gcc.10040; PMid:11921269

Rubnitz JE, Raimondi SC, Tong X et al. (2002). Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 20:2302—2309. https://doi.org/10.1200/JCO.2002.08.400; https://doi.org/10.1200/JCO.2002.08.023

Schmiegelow K, Levinsen MF, Attarbaschi A et al. (2013). Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J Clin Oncol. 31(19):2469—2476. https://doi.org/10.1200/JCO.2012.47.0500; PMid:23690411 PMCid:PMC3807139

Schroeder T, Czibere A, Kroger N et al. (2011). Phase II study of azacitidine (Vidaza®, Aza) and donor lymphocyte infusions (DLI) as first salvage therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) relapsing after allogeneic hematopoietic stem cell transplantation (allo-SCT): final results from the AZARELA trial (NCT-00795548). Blood. 118: abs. 656.17.

Singh ZN, Huo D, Anastasi J et al. (2007). Therapy-related myelodysplastic syndrome: morphologic subclassification may not be clinically relevant. Am J Clin Pathol. 127(2): 197—205. https://doi.org/10.1309/NQ3PMV4U8YV39JWJ; PMid:17210514

Smita Bhatia, Harland N Sather, Olga B Pabustan et al. (2002). Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood. 99: 4257—4264. https://doi.org/10.1182/blood.V99.12.4257; PMid:12036851

Smith SM, Le Beau MM, Huo D et al. (2003). Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 102: 43—52. https://doi.org/10.1182/blood-2002-11-3343; PMid:12623843

Sun WF, Cheng FW, Lee V et al. (2011). Second malignant neoplasms in childhood cancer survivors in a tertiary paediatric oncology centre in Hong Kong, China. Chin Med J (Engl). 124(22): 3686—3692.

Tai EW, Ward KC, Bonaventure A, Siegel DA, Coleman MP. (2017). Survival among children diagnosed with acute lymphoblastic leukemia in the United States, by race and age, 2001 to 2009: Findings from the CONCORD-2 study. Cancer. 123(24): 5178—5189. https://doi.org/10.1002/cncr.30899; PMid:29205314 PMCid:PMC6075705

Takeyama K, Seto M, Uike N et al. (2000). Therapy-related leukemia and myelodysplastic syndrome: a large-scale Japanese study of clinical and cytogenetic features as well as prognostic factors. Int J Hematol. 71: 144—152. PMid:10745624

Tebbi CK, London WB, Friedman D et al. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol. 25(5): 493—500. https://doi.org/10.1200/JCO.2005.02.3879; PMid:17290056

Teng CJ, Huon LK, Hu YW et al. (2016). Secondary solid organ neoplasm in patients with acute lymphoblastic leukemia: a Nationwide Population-Based Study in Taiwan. PLoS One. 11(4): e0152909. https://doi.org/10.1371/journal.pone.0152909; PMid:27035574 PMCid:PMC4817987

Tragiannidis A, Gombakis N, Papageorgiou M et al. (2016). Treatment-related myelodysplastic syndrome (t-MDS)/acute myeloid leukemia (AML) in childrenwith cancer: a single-center experience. Int J Immunopathol Pharmacol. 29(4): 729—730. https://doi.org/10.1177/0394632016670667; PMid:27647464 PMCid:PMC5806816

Travis LB, Rabkin CS, Brown LM et al. (2006). Cancer survivorship — genetic susceptibility and second primary cancers: research strategies and recommendations. J Natl Cancer Inst. 98(1): 15—25. https://doi.org/10.1093/jnci/djj001; PMid:16391368

Turcotte LM, Liu Q, Yasui Y et al. (2017). Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970—2015. JAMA. 317(8): 814—824. https://doi.org/10.1001/jama.2017.0693; PMid:28245323 PMCid:PMC5473951

Valentina Nardi, Karen M Winkfield, Chi Y Ok et al. (2012). Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to de novo disease and differ from other therapy-related myeloid neoplasms. J Clin Oncol. 30(19): 2340—2347. https://doi.org/10.1200/JCO.2011.38.7340; PMid:22585703 PMCid:PMC4979234

Van Gelder M, de Wreede LC, Schetelig J et al. (2013). Monosomal karyotype predicts poor survival after allogeneic stem cell transplantation in chromosome 7 abnormal myelodysplastic syndrome and secondary acute myeloid leukemia. Leukemia. 27: 879—888. https://doi.org/10.1038/leu.2012.297; PMid:23164802

Vardiman JW, Brunning RD, Larson RA et al. (2008). Therapy-related myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL et al. (Eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC Press: 127—129.

Vrooman LM, Neuberg DS, Stevenson KE et al. (2011). The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer. 47(9): 1373—1379. https://doi.org/10.1016/j.ejca.2011.03.022; PMid:21514146 PMCid:PMC3736806

Westermeier T, Kaatsch P, Schoetzau A, Michaelis J. (1998). Multiple primary neoplasms in childhood: the data from the German Children's Cancer Registry. Eur J Cancer. 34: 687. https://doi.org/10.1016/S0959-8049(97)00326-2

Wierzbowska A, Wawrzyniak E, Szmigielska-Kaplon A et al. (2013). Wtorna ostra bialaczka szpikowa u chorej po skutecznym leczeniu ostrej bialaczki promielocytowej. Hematologia. 4(4): 358—362.

Zahid MF, Parnes A, Savani BN, Litzow MR, Hashmi SK. (2016). Therapy-related myeloid neoplasms — what have we learned so far? World J Stem Cells. 8(8): 231—242. https://doi.org/10.4252/wjsc.v8.i8.231; PMid:27621757 PMCid:PMC4999650

Zhang L, Wang SA. (2014). A focused review of hematopoietic neoplasms occurring in the therapy-related setting. Zhang L, Wang SA.Int J Clin Exp Pathol. 7(7): 3512—3523. PMid:25120730 PMCid:PMC4128965

Zhao N, Stoffel A, Wang PW et al. (1997). Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1—1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA. 94: 6948—6953. https://doi.org/10.1073/pnas.94.13.6948; PMid:9192672

Выпуск

Раздел

Клинический случай