Значение интерстициальных клеток кахаля в функции мочевого пузыря: современное состояние вопроса
DOI:
https://doi.org/10.15574/10.15574/SP.2017.81.117Ключевые слова:
интерстициальные клетки Кахаля, нервно-мышечная дисфункция мочевого пузыряАннотация
Интерстициальные клетки Кахаля (ИКК) впервые были открыты в 1893 году в стенке кишечника и лишь спустя почти 100 лет интерес к ИКК возобновился. Кроме того, современные технологии дали возможность выявить схожие клетки и в других органах, в частности тех, которые содержат мышечные волокна и, соответственно, подлежат сокращению. Так, ИКК были обнаружены в мочевых путях, фаллопиевых трубах, семенных канальцах и т.д. Дальнейшее исследование функции ИКК установило связь между нарушением периферической иннервации мочевого пузыря (нервно-мышечная дисфункция мочевого пузыря) и концентрацией ИКК. Таким образом, исследование концентрации ИКК в стенке мочевого пузыря при его дисфункции может повлиять на тактику ведения больных в перспективе.Библиографические ссылки
Hrusha MM. 2016. Novi aspekty mizhklitynnoi vzaiemodii v stintsi kyshechnyku. Visnyk problem biolohii i medytsyny. 1; 1(126): 17—21.
Mishalov VG, Leschishin IM, Ohotskaya OI et al. 2015. Neyrogliopatiya kishechnika kak prichina funktsionalnogo zapora. Khirurhiia Ukrainy. 4: 20—27.
Tsymbaliuk OV, Martyniuk VS. 2012. Vplyv mahnitnoho polia nadnyzkoi chastoty na spontannu skorotlyvu aktyvnist intestynalnykh hladenkykh miaziv. Visnyk Cherkaskoho un-tu. 2(215): 128—133.
Ahmed HF, Helal O, Abdel-Wahab H. 2006. Histological And Immunohistochemical Study On Interstitial Cells Of Cajal In Normal Human Fallopian Tube And In Cases Of Ectopic Pregnancy. The Egyptian Journal Of Histology. 29; I: 85—102.
Akhtar T, Alladi A, Siddappa OS. 2012. Megacystis-microcolon-intestinal hypoperistalsis syndrome associated with prune belly syndrome: a case report. J Neonat Surg. 1: 26.
Arena S, Fazzari C, Arena F et al. 2007. Altered “active” antireflux mechanism in primary vesico-ureteric reflux: a morphological and manometric study. BJUI. 100; Is 2: 407—412. doi 10.1111/j.1464-410X.2007.06921.x.
Juszczak K, Maciukiewicz P, Drewa T, Thor PJ. 2013. Cajal-like interstitial cells as a novel target in detrusor overactivity treatment: true or myth? Cent European J Urol. 66 (4): 413—417. doi 10.5173/ceju.2013.04.art5 https://doi.org/10.5173/ceju.2013.04.art5 PMCID: PMC3992455.
Arena F, Nicotina PA, Arena S et al. 2007. C-kit positive interstitial cells of Cajal network in primary obstructive megaureter. Minerva Pediatrica. 59 (1): 7—11. PMID:17301719. PMid:17301719.
Metzger R, Rolle U, Fiegel HC et al. 2008. C-kit receptor in the human vas deferens: distinction of mast cells, interstitial cells and interepithelial cells. Reproduction. 135: 377—384. https://doi.org/10.1530/REP-07-0346.
Gupta A, Bajpai M, Mallick S et al. 2014. Cloacal Exstrophy: A Histomorphological Analysis of the Bladder Plate and Correlation with Bladder Dynamics. Journal of Progress in Paediatric Urology. 17; Is 1: 33—36.
Balikci O, Turunc T, Bal N et al. 2015. Comparison of Cajal-like cells in pelvis and proximal ureter of kidney with and without hydronephrosis. Int Braz J Urol. 41; 6: 1178—1184. http://dx.doi.org/10.1590/S167755538. IBJU.2014.0427.
Davidson RA, McCloskey KD. 2005. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. The Journal of Urology. 173; Is 4: 1385—1390.
He C-L, Burgart L, Wang L et al. 2000. Decreased interstitial cell of Cajal volume in patients with slow-transit constipation. Gastroenterology. 118(1): 14—21. http://dx.doi.org/10.1016/S001655085(00)7040954.
Tan Y-Y, Ji Z-L, Zhao G et al. 2014. Decreased SCF/c-kit signaling pathway contributes to loss of interstitial cells of Cajal in gallstone disease. Int J Clin Exp Med. 7(11): 4099—4106. PMid:25550919 PMCid:PMC4276177
Piaseczna-Piotrowska AM, Dzieniecka M, Kulig A et al. 2011. Different distribution of c-kit positive interstitial cells of Cajal-like in children's urinary bladders Folia. Histochemica et Cytobiologica. 49; 3: 431—435. https://doi.org/10.5603/FHC.2011.0061.
Tekin A, Karakus OZ, Hakguder G et al. 2016. Distribution of interstitial cells of Cajal in the bladders of fetal rats with retinoic acid induced myelomeningocele. Turk J Urol. 42(3): 285—289. https://doi.org/10.5152/tud.2016.98474.
Piaseczna-Piotrowska A, Dzieniecka M, Samolewicz E et al. 2013. Distribution of interstitial cells of Cajal in the neurogenic urinary bladder of children with myelomeningocele. Advances in Medical Sciences. 58; Is 2: 388—393.
Kubota Y, Biers SM, Kohri K, Brading AF. 2006. Effects of imatinib mesylate (Glivec) as a c-kit tyrosine kinase inhibitor in the guinea-pig urinary bladder. Neurourology and Urodynamics. 25(3): 205—210. PMID: 16425211. https://doi.org/10.1002/nau.20085.
Gray SM, McGeown JG, McMurray G, McCloskey KD. 2013. Functional Innervation of Guinea-Pig Bladder Interstitial Cells of Cajal Subtypes: Neurogenic Stimulation Evokes In Situ Calcium Transients. PLoS ONE. 8(1): 53423. https://doi.org/10.1371/journal.pone.0053423.
Hashitani H. 2006. Interaction between interstitial cells and smooth muscles in the lower urinary tract and penis. J Physiol. 576: 707—714. https://doi.org/10.1113/jphysiol.2006.116632
Shafik A, El-Sibai O, Shafik AA, Shafik I. 2004. Identification of interstitial cells of Cajal in human urinary bladder: Concept of vesical pacemaker. Urology. 64; Is 4: 809—813.
Piaseczna-Piotrowska A, Rolle U, Solari V, Puri P. 2004. Interstitial cells of Cajal in the human normal urinary bladder and in the bladder of patients with megacystis-microcolon intestinal hypoperistalsis syndrome. BJU Int. 94 (1): 143—6. https://doi.org/10.1111/j.1464-410X.2004.04914.x; PMid:15217450
Wang H, Zhang Y, Liu W et al. 2009. Interstitial cells of Cajal reduce in number in recto-sigmoid Hirschsprung's disease and total colonic aganglionosis. Neuroscience Letters. 451: 208—211. https://doi.org/10.1016/j.neulet.2009.01.015.
Klemm MF, Exintaris B, Lang RJ. 1999. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract. J Physiol. 519 (3): 867—884. doi 10.1111/5j.1469-7793.1999.0867n.x.
Mehrazma M, Tanzifi P, Rakhshani N. 2014. Changes in structure, interstitial Cajal-like cells and apoptosis of smooth muscle cells in congenital ureteropelvic junction obstruction. Pathology. 46; Suppl 2: 134. https://doi.org/10.1097/01.PAT.0000454556.77877.27
Mostafa RM, Moustafa YM, Hamdy H. 2010. Interstitial cells of Cajal, the Maestro in health and disease. World J Gastroenterol. 16 (26): 3239—3248. doi 10.3748/5WJG.v16.i26.3239.
Kenny SE, Connell G, Woodward MN et al. 1999. Ontogeny of Interstitial Cells of Cajal in the Human Intestine. Journal of pediatric Surgery. 34 (8): 1241—1247. https://doi.org/10.1016/S0022-3468(99)90160-4
McHale NG, Hollywood MA, Sergeant GP et al. 2006. Organization and function of ICC in the urinary tract. J Physiol. 576 (3): 689—694. https://doi.org/10.1113/jphysiol.2006.116657; PMid:16916908 PMCid:PMC1890397
Arena S, Iacona R, Impellizzeri P et al. 2016. Physiopathology of vesico5ureteral reflux. Italian Journal of Pediatrics. 42: 103. doi 10.1186/s13052-016-03165x.
Kubota Y, Kojima Y, Shibata Y et al. 2011. Role of KIT-Positive Interstitial Cells of Cajal in the Urinary Bladder and Possible Therapeutic Target for Overactive Bladder. Advances in Urology. 2011. Article ID 816342. 7. https://doi.org/10.1155/2011/816342.
Solari V, Piaseczna-Piotrowska A, Puri P. 2003. Altered Expression of Interstitial Cells of Cajal in Congenital Ureteropelvic Junction Obstruction. The Journal of Urology. 170 (6/1): 2420—2422.
Biers SM, Reynard JM, Doore T, Brading AF. 2006. The functional effects of a c-kit tyrosine inhibitor on guinea-pig and human detrusor. BJU International. 97 (3): 612—616. PMID: 16469036. https://doi.org/10.1111/j.1464-410X.2005.05988.x.
Yang X, Zhang Y, Hu J. 2009. The expression of Cajal cells at the obstruction site of congenital pelviureteric junction obstruction and quantitative image analysis. Journal of Pediatric Surgery. 44: 2339—2342. https://doi.org/10.1016/j.jpedsurg.2009.07.061.