Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa (часть 2)

Авторы

  • O. E. Abaturov ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина, https://orcid.org/0000-0003-3724-217X
  • A. O. Nikulina ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина,

DOI:

https://doi.org/10.15574/SP.2016.80.59

Ключевые слова:

пневмония, Pseudomonas aeruginosa, цитокины, интерфероны І и ІІІ типа

Аннотация

В статье на основании литературных данных проанализирована ключевая роль провоспалительных и противовоспалительных цитокинов в развитии иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Описаны сигнальные пути, индуцирующие продукцию интерферонов І и ІІІ типа, участвующие в элиминации Pseudomonas aeruginosa.


Ключевые слова:
пневмония, Pseudomonas aeruginosa, цитокины, интерфероны І и ІІІ типа.

 

Библиографические ссылки

Abaturov AE, Volosovets AP, Yulish EI. 2012. The induction of the molecular mechanisms of nonspecific protection of the respiratory tract. K, Private Drukarnya FD-II, Storozhuk OV: 240.

Al Moussawi K, Kazmierczak BI. 2014. Distinct contributions of interleukin-1α (IL-1α) and IL-1β to innate immune recognition of Pseudomonas aeruginosa in the lung. Infect Immun. 82(10): 4204-11. https://doi.org/10.1128/IAI.02218-14.

Hajjar AM, Harowicz H, Liggitt HD et al. 2005. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia. Am J Respir Cell Mol Biol. 33(5): 470—5. https://doi.org/10.1165/rcmb.2005-0199OC.

Li L, Nie W, Li W et al. 2013. Associations between TNF-α polymorphisms and pneumonia: a meta-analysis. PLoS One. 8(4): e61039. https://doi.org/10.1371/journal.pone.0061039.

Borthwick LA. 2016. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38(4): 517—34. https://doi.org/10.1007/s00281-016-0559-z.

Boxx GM, Cheng G. 2016. The Roles of Type I Interferon in Bacterial Infection. Cell Host Microbe. 19(6): 760-9. https://doi.org/10.1016/j.chom.2016.05.016.

Broz P. 2015. Inflammasome assembly: The wheels are turning. Cell Res. 25(12): 1277—8. https://doi.org/10.1038/cr.2015.137.

Cohen TS, Prince AS. 2013.Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest. 123(4): 1630—7. https://doi.org/10.1172/JCI66142.

Cohen TS, Prince AS. 2013. Bacterial pathogens activate a common inflammatory path-way through IFNl regulation of PDCD4. PLoS Pathog. 9(10): e1003682. https://doi.org/10.1371/journal.ppat.1003682.

Cohen TS, Parker D. 2016. Microbial pathogenesis and type III interferons. Cytokine Growth Factor Rev. 29: 45—51. https://doi.org/10.1016/j.cytogfr.2016.02.005.

Cyktor JC, Turner J. 2011.Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun. 79(8): 2964—73. https://doi.org/10.1128/IAI.00047-11.

Pene F, Zuber B, Courtine E et al. 2008. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol. 181(12): 8513—20. doi 10.4049/ jimmunol.181.12.8513.

Dubin PJ, Kolls JK. 2011. IL-17 in cystic fibrosis: more than just Th17 cells. Am J Respir Crit Care Med. 184(2): 155—7. https://doi.org/10.1164/rccm.201104-0617ED.

Sun L, Guo RF, Newstead MW et al. 2009. Effect of IL-10 on neutrophil recruitment and survival after Pseudomonas aeruginosa challenge. Am J Respir Cell Mol Biol. 41(1): 76—84. https://doi.org/10.1165/rcmb.2008-0202OC.

Lage SL, Longo C, Branco LM et al. 2014. Emerging Concepts about NAIP/NLRC4 Inflammasomes. Front Immunol. 5: 309. https://doi.org/10.3389/fimmu.2014.00309.

Miyamoto M, Prause O, Sjostrand M et al. 2003. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol. 170(9): 4665—72. https://doi.org/10.4049/jimmunol.170.9.4665.

Farias R, Rousseau S. 2016. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol. 3: 87. https://doi.org/10.3389/fcell.2015.00087.

Hazlett LD, Jiang X, McClellan SA. 2014. IL-10 function, regulation, and in bacterial keratitis. J Ocul Pharmacol Ther. 30(5): 373—80. https://doi.org/10.1089/jop.2014.0018.

Carles M, Wagener BM, Lafargue M et al. 2014.Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin -10-dependent mechanism in mice. Anesthesiology. 120(6): 1450—62. https://doi.org/10.1097/ALN.0000000000000235.

Carrigan SO, Junkins R, Yang YJ et al. 2010. IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. J Immunol. 185(6): 3602—9. https://doi.org/10.4049/jimmunol.0903429.

Sawa T, Corry DB, Gropper MA et al. 1997. IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol. 159(6): 2858—66. PMID: 9300709.; PMid:9300709

Lore NI, Cigana C, Riva C et al. 2016. IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Sci Rep. 6: 25937. https://doi.org/10.1038/srep25937.

Huang X, McClellan SA, Barrett RP, Hazlett LD. 2002. IL-18 contributes to host resistance against infection with Pseudomonas aeruginosa through induction of IFN-gamma production. J Immunol. 168(11): 5756—63.doi 10.4049/ jimmunol.168.11.5756.

Hazlett LD, McClellan SA, Barrett RP et al. 2010. IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci. 51(3): 1524—32. https://doi.org/10.1167/iovs.09-3983.

Chang J, Xia YF, Zhang MZ, Zhang LM. 2016. IL-33 Signaling in Lung Injury. Transl Perioper Pain Med. 1(2): 24—32. PMid:27536706 PMCid:PMC4985245.

Spight D, Zhao B, Haas M et al. 2005. Immunoregulatory effects of regulated, lung-targeted expression of IL-10 in vivo. Am J Physiol Lung Cell Mol Physiol. 288(2): L251—65. https://doi.org/10.1152/ajplung.00122.2004; PMid:15466252

Parker D, Cohen TS, Alhede M et al. 2012. Induction of type I interferon signaling by Pseudomonas aeruginosa is diminished in cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol. 46(1): 6—13. https://doi.org/10.1165/rcmb.2011-0080OC.

Parker D, Ahn D, Cohen T, Prince A. 2016. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev. 96(1): 19—53. https://doi.org/10.1152/physrev.00009.2015.

Shindo Y, Fuchs AG, Davis CG et al. 2016, Sep 14. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J Leukoc Biol. pii: jlb.4A1215-581R.

Hsu D, Taylor P, Fletcher D et al. 2016. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect Immun. 84(9): 2410—21. https://doi.org/10.1128/IAI.00284-16.

Dinarello CA, Novick D, Kim S, Kaplanski G. 2013. Interleukin-18 and IL-18 binding protein. Front Immunol. 4: 289. https://doi.org/10.3389/fimmu.2013.00289.

Schultz MJ, Knapp S, Florquin S et al. 2003. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa. Infect Immun. 71(4): 1630—4. https://doi.org/10.1128/IAI.71.4.1630-1634.2003.

Alves-Filho JC, Sonego F, Souto FO et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 16(6): 708—12. https://doi.org/10.1038/nm.2156.

Hamming OJ, Gad HH, Paludan S, Hartmann R. 2010. Lambda Interferons: New Cytokines with Old Functions. Pharmaceuticals (Basel). 3(4): 795—809. https://doi.org/10.3390/ph3040795.

Lavoie EG, Wangdi T, Kazmierczak BI. 2011. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 13(14—15): 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

Liew FY, Girard JP, Turnquist HR. 2016, Sep 19. Interleukin-33 in health and disease. Nat Rev Immunol. https://doi.org/10.1038/nri.2016.95.

Nakasone C, Kawakami K, Hoshino T et al. 2004. Limited role for interleukin-18 in the host protection response to pulmonary infection with Pseudomonas aeruginosa in mice. Infect Immun. 72(10): 6176—80. https://doi.org/10.1128/IAI.72.10.6176-6180.2003.

Wolbeling F, Munder A, Kerber-Momot T et al. 2011. Lung function and inflammation during murine Pseudomonas aeruginosa airway infection. Immunobiology. 216(8): 901—8. https://doi.org/10.1016/j.imbio.2011.02.003.

Lee JH, Del Sorbo L, Khine AA et al. 2003. Modulation of bacterial growth by tumor necrosis factor-alpha in vitro and in vivo. Am J Respir Crit Care Med. 168(12): 1462—70. https://doi.org/10.1164/rccm.200302-303OC.

Molofsky AB, Savage AK, Locksley RM. 2015. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity. 42(6): 1005—19. https://doi.org/10.1016/j.immuni.2015.06.006.

Kanno E, Kawakami K, Miyairi S et al. 2013. Neutrophil-derived tumor necrosis factor-α contributes to acute wound healing promoted by N-(3-oxododecanoyl)-L-homoserine lactone from Pseudomonas aeruginosa. J Dermatol Sci. 70(2): 130—8. https://doi.org/10.1016/j.jdermsci.2013.01.004.

Novick D, Kim S, Kaplanski G, Dinarello CA. 2013, Dec 15. Interleukin-18, more than a Th1 cytokine. Semin Immunol. 25(6): 439—48. https://doi.org/10.1016/j.smim.2013.10.014.

Patankar YR, Mabaera R, Berwin B. 2015. Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1β response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 309(8): L902—13. https://doi.org/10.1152/ajplung.00228.2015.

Chmiel JF, Konstan MW, Saadane A et al. 2002. Prolonged inflammatory response to acute Pseudomonas challenge in interleukin-10 knockout mice. Am J Respir Crit Care Med. 165(8): 1176—81. https://doi.org/10.1164/ajrccm.165.8.2107051.

Yue L, Xie Z, Li H et al. 2016. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection. Am J Pathol. 186(5): 1234—44. https://doi.org/10.1016/j.ajpath.2016.01.005.

Tsay TB, Jiang YZ, Hsu CM, Chen LW. 2016. Pseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury. Respir Res. 17(1): 101. https://doi.org/10.1186/s12931-016-0417-5.

Faure E, Mear JB, Faure K et al. 2014. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med. 189(7): 799—811. https://doi.org/10.1164/rccm.201307-1358OC.

Rathore JS, Wang Y. 2016. Protective role of Th17 cells in pulmonary infection. Vaccine. 34(13): 1504—14. https://doi.org/10.1016/j.vaccine.2016.02.021.

Kinoshita M, Shinomiya N, Ono S et al. 2006. Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J Immunol. 177(7): 4627—35. https://doi.org/10.4049/jimmunol.177.7.4627.

Palomo J, Marchiol T, Piotet J et al. 2014. Role of IL-1β in experimental cystic fibrosis upon P. aeruginosa infection. PLoS One. 9(12): e114884. https://doi.org/10.1371/journal.pone.0114884.

Schultz MJ, Rijneveld AW, Florquin S et al. 2002. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 282(2): L285—90. https://doi.org/10.1152/ajplung.00461.2000; PMid:11792633

Xu X, Shao B, Wang R et al. 2014. Role of Interleukin-17 in defense against pseudomonas aeruginosa infection in lungs. Int J Clin Exp Med. 7(4): 809—16. PMID: 24955149. PMid:24955149 PMCid:PMC4057828.

Skerrett SJ, Martin TR, Chi EY et al. 1999. Role of the type 1 TNF receptor in lung inflammation after inhalation of endotoxin or Pseudomonas aeruginosa. Am J Physiol. 276 (5 Pt 1): L715—27. PMid:10330027.

Roy S, Karmakar M, Pearlman E. 2014. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem. 289(2): 1174—82. https://doi.org/10.1074/jbc.M113.523167.

Huang J, Yu S, Ji C, Li J. 2015. Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis. 20(2): 210—5. https://doi.org/10.1007/s10495-014-1061-5.

Lore NI, Bragonzi A, Cigana C et al. 2016. The IL(17A/IL(17RA axis in pulmonary defence and immunopathology. Cytokine Growth Factor Rev. 30: 19—27. https://doi.org/10.1016/j.cytogfr.2016.03.009.

Liu J, Qu H, Li Q et al. 2013.The responses of γδ T-cells against acute Pseudomonas aeruginosa pulmonary infection in mice via interleukin-17. Pathog Dis. 68(2): 44—51. doi 10.1111/2049632X.12043.

Wonnenberg B, Bischoff M, Beisswenger C et al. 2016. The role of IL-1β in Pseudomonas aeruginosa in lung infection. Cell Tissue Res. 364(2): 225—9. https://doi.org/10.1007/s00441-016-2387-9.

Choi S, Park YS, Koga T et al. 2011. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 44(2): 255—60. https://doi.org/10.1165/rcmb.2009-0323OC.

Xiao M. 2016. The Role of Proinflammatory Cytokine Interleukin-18 in Radiation Injury. Health Phys. 111(2): 212—7. doi 10.1097/HP. 0000000000000494.

Загрузки

Выпуск

Раздел

Иммунология