Развитие иммунного ответа при пневмонии, вызванной Pseudomonas aeruginosa. Часть 1

Авторы

  • O. E. Abaturov ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина, https://orcid.org/0000-0003-3724-217X
  • A. O. Nikulina ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина,

DOI:

https://doi.org/10.15574/SP.2016.79.65

Ключевые слова:

пневмония, Pseudomonas aeruginosa, образ-распознающие рецепторы

Аннотация

Нозокомиальные бактериальные пневмонии, ассоциированные с грамотрицательными возбудителями, характеризуются тяжелым течением, высоким риском развития осложнений и летального исхода. В данной статье рассмотрены реакции иммунной системы на инфицирование грамотрицательной бактерией Pseudomonas aeruginosa респираторного тракта, которые обеспечивают эффективный клиренс патогена. Продемонстрированы механизмы индукции образраспознающих рецепторов клеток респираторного тракта патоген-ассоцированными молекулярными структурами Pseudomonas aeruginosa.


Ключевые слова:
пневмония, Pseudomonas aeruginosa, образ-распознающие рецепторы.

 

Библиографические ссылки

Mijares LA, Wangdi T, Sokol C et al. 2011, Jun, 15. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway. J Immunol. 186(12): 7080—8. https://doi.org/10.4049/jimmunol.1003687.

Hajjar AM, Harowicz H, Liggitt HD et al. 2005. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia. Am J Respir Cell Mol Biol. 33(5): 470—5. https://doi.org/10.1165/rcmb.2005-0199OC.

Bentham A, Burdett H, Anderson PA et al. 2016, Aug, 25. Animal NLRs provide structural insights into plant NLR function. Ann Bot. pii: mcw171. https://doi.org/10.1093/aob/mcw171; PMid:27562749

Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. 2015, Sep, 1. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. MBio. 6(5): e00981—15. https://doi.org/10.1128/mBio.00981-15.

Beatson SA, Minamino T, Pallen MJ. 2006. Variation in bacterial flagellins: from sequence to structure. Trends Microbiol. 14: 151—5. https://doi.org/10.1016/j.tim.2006.02.008.

Bleriot C, Lecuit M. 2016. The interplay between regulated necrosis and bacterial infection. Cell Mol Life Sci. 73(11—12): 2369-78. https://doi.org/10.1007/s00018-016-2206-1.

Shen H, de Almeida PE, Kang KH et al. 2012. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions. PLoS One. 7(11): e50238. https://doi.org/10.1371/journal.pone.0050238.

Chun J, Prince A. 2009, Jan, 22. TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration. Cell Host Microbe. 5(1): 47—58. https://doi.org/10.1016/j.chom.2008.11.009.

Cohen TS, Prince AS. 2013. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest. 123(4): 1630—7. https://doi.org/10.1172/JCI66142.

Billod JM, Lacetera A, Guzman-Caldentey J, Martin-Santamaria S. 2016, Jul, 30. Computational Approaches to Toll-Like Receptor 4 Modulation. Molecules. 21(8). pii: E994. https://doi.org/10.3390/molecules21080994.

Cunha LD, Zamboni DS. 2013, Nov, 26. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol. 3: 76. https://doi.org/10.3389/fcimb.2013.00076.

Magnusson M, Tobes R, Sancho J, Pareja E. 2007, Jul, 1. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9. J Immunol. 179(1): 31—5. https://doi.org/10.4049/jimmunol.179.1.31.

de Vasconcelos NM, Van Opdenbosch N, Lamkanfi M. 2016. Inflammasomes as polyvalent cell death platforms. Cell Mol Life Sci. 73(11—12): 2335—47. https://doi.org/10.1007/s00018-016-2204-3.

Ivicak-Kocjan K, Panter G, Bencina M, Jerala R. 2013.Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor. Biochem Biophys Res Commun. 435: 40—5. https://doi.org/10.1016/j.bbrc.2013.04.030.

Epelman S, Stack D, Bell C et al. 2004, Aug, 1. Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J Immunol. 173(3): 2031—40. https://doi.org/10.4049/jimmunol.173.3.2031.

Forstneric V, Ivicak-Kocjan K, Ljubetic A et al. 2016, Jul, 8. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5. PLoS One. 11(7): e0158894. https://doi.org/10.1371/journal.pone.0158894.

Ulland TK, Ferguson PJ, Sutterwala FS et al. 2015. Evasion of inflammasome activation by microbial pathogens. J Clin Invest. 125(2): 469—77. https://doi.org/10.1172/JCI75254.

Farias R, Rousseau S. 2016, Jan, 11. The TAK1→IKKβ→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa. Front Cell Dev Biol. 3: 87. https://doi.org/10.3389/fcell.2015.00087.

Balloy V, Thevenot G, Bienvenu T et al. 2014, Jun, 9. Flagellin concentrations in expectorations from cystic fibrosis patients. BMC Pulm Med. 14: 100. https://doi.org/10.1186/1471-2466-14-100.

Rieber N, Brand A, Hector A et al. 2013, Feb, 1. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 190(3): 1276—84. https://doi.org/10.4049/jimmunol.1202144.

Folgori L, Bernaschi P, Piga S. 2016, Aug, 11. Healthcare-Associated Infections in Pediatric and Neonatal Intensive Care Units: Impact of Underlying. Risk Factors and Antimicrobial Resistance on 30-Day Case-Fatality in Italy and Brazil. Infect Control Hosp Epidemiol: 1—8. https://doi.org/10.1017/ice.2016.185.

Galal YS, Youssef MR, Ibrahiem SK. 2016. Ventilator-Associated Pneumonia: Incidence, Risk Factors and Outcome in Paediatric Intensive Care Units at Cairo University Hospital. J Clin Diagn Res. 10(6): SC06—11. https://doi.org/10.7860/JCDR/2016/18570.7920.

Karalyan Z, Voskanyan H, Ter-Pogossyan Z et al. 2016, Oct, 15. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever. Vet Immunol Immunopathol. 179: 58—62. https://doi.org/10.1016/j.vetimm.2016.08.005.

Greene CM, Ramsay H, Wells RJ et al. 2010. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor. Mediators Inflamm. 2010: 423241. https://doi.org/10.1155/2010/423241.

Parker D, Ahn D, Cohen T et al. 2016. Innate immune signaling activated by MDR bacteria in the airway. Physiol Rev. 96(1): 19—53. https://doi.org/10.1152/physrev.00009.2015.

Kato K, Lillehoj EP, Kim KC. 2014. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-beta (TRIF) recruitment to Toll-like receptor 3. Am J Respir Cell Mol Biol. 51(3): 446—54. https://doi.org/10.1165/rcmb.2014-0018OC.

Lavoie EG, Wangdi T, Kazmierczak BI. 2011. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect. 13(14—15): 1133—45. https://doi.org/10.1016/j.micinf.2011.07.011.

Lechtenberg BC, Mace PD, Riedl SJ. 2014. Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol. 29: 17—25. https://doi.org/10.1016/j.sbi.2014.08.011.

Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 6(1): 26—41. https://doi.org/10.1007/s13238-014-0100-x.

Kang SS, Sim JR, Yun CH, Han SH. 2016, Aug, 8. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res.

Lovewell RR, Patankar YR, Berwin B. 2014, Apr, 1. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 306(7): 591—603. https://doi.org/10.1152/ajplung.00335.2013.

Anas AA, van Lieshout MH, Claushuis TA et al. 2016, Aug, 1. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol. 311(2): 219—28. https://doi.org/10.1152/ajplung.00078.2016.

Maldonado RF, Sa-Correia I, Valvano MA. 2016. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 40(4): 480—93. https://doi.org/10.1093/femsre/fuw007.

Maltez VI, Miao EA. 2016, Feb, 1. Reassessing the Evolutionary Importance of Inflammasomes. J Immunol. 196(3): 956—62. https://doi.org/10.4049/jimmunol.1502060.

Mayer AK, Muehmer M, Mages J et al. 2007, Mar, 1. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol. 178(5): 3134—42. https://doi.org/10.4049/jimmunol.178.5.3134; PMid:17312161.

McIsaac SM, Stadnyk AW, Lin TJ. 2012. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol. 92(5): 977—85. https://doi.org/10.1189/jlb.0811410.

Vanaja SK, Rathinam VA, Fitzgerald KA et al. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 25(5): 308—15. https://doi.org/10.1016/j.tcb.2014.12.009.

Ryu JC, Kim MJ, Kwon Y et al. 2016, Aug, 24. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. https://doi.org/10.1038/mi.2016.73.

Pier GB. 2007. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol. 297(5): 277—95. https://doi.org/10.1016/j.ijmm.2007.03.012.

Park YS, Lillehoj EP, Kato K et al. 2012, Apr, 1. PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am J Physiol Lung Cell Mol Physiol. 302(7): 679—87. https://doi.org/10.1152/ajplung.00360.2011.

Zhang S, Yang N, Ni S et al. 2014, Sep, 15. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway. Int J Clin Exp Pathol. 7(10): 6626—34. PMid:25400741 PMCid:PMC4230075.

Amiel E, Lovewell RR, O'Toole GA et al. 2010. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. Infect Immun. 78(7): 2937—45. https://doi.org/10.1128/IAI.00144-10.

Adamo R, Sokol S, Soong G et al. 2004. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol. 30(5): 627—34. https://doi.org/10.1165/rcmb.2003-0260OC.

Li X, He S, Li R et al. 2016, Aug, 8. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration. Nat Microbiol. 1(10): 16132. https://doi.org/10.1038/nmicrobiol.2016.132.

Zhao K, Deng X, He C et al. 2013. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway. Infect. Immun. 81(12): 4509—18. https://doi.org/10.1128/IAI.01008-13.

Huber P, Basso P, Reboud E, Attree I. 2016, Jul, 18. Pseudomonas aeruginosa renews its virulence factors. Environ Microbiol Rep. https://doi.org/10.1111/1758-2229.12443.

Faure E, Mear JB, Faure K et al. 2014, Apr, 1. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med. 189(7): 799—811. https://doi.org/10.1164/rccm.201307-1358OC.

Kepp O, Galluzzi L, Zitvogel L, Kroemer G. 2010. Pyroptosis — a cell death modality of its kind? Eur J Immunol. 40(3): 627—30. https://doi.org/10.1002/eji.200940160.

Ranf S. 2016, Jun, 9. Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different. PLoS Pathog. 12 (6): e1005596. https://doi.org/10.1371/journal.ppat.1005596.

Re F, Strominger JL. 2004, Dec, 15. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J Immunol. 173(12): 7548—55. https://doi.org/10.4049/jimmunol.173.12.7548.

Skerrett SJ, Wilson CB, Liggitt HD, Hajjar AM. 2007. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 292(1): 312—22. https://doi.org/10.1152/ajplung.00250.2006.

Valenza G, Radike K, Schoen C, Horn S et al. 2010. Resistance to tobramycin and colistin in isolates of Pseudomonas aeruginosa from chronically colonized patients with cystic fibrosis under antimicrobial treatment. Scand J Infect Dis. 42(11—12): 885—9. https://doi.org/10.3109/00365548.2010.509333.

Morris AE, Liggitt HD, Hawn TR, Skerrett SJ. 2009. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol. 297(6): 1112—9. https://doi.org/10.1152/ajplung.00155.2009.

Verma A, Arora SK, Kuravi SK, Ramphal R. 2005. Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect Immun. 73(12): 8237—46. https://doi.org/10.1128/IAI.73.12.8237-8246.2005.

Sandiumenge A, Rello J. 2012. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management. Curr Opin Pulm Med. 18(3): 187—93. https://doi.org/10.1097/MCP.0b013e328351f974.

Sawa T. 2014, Feb, 18. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response. J Intensive Care. 2(1): 10. https://doi.org/10.1186/2052-0492-2-10.

Diaz Caballero J, Clark ST, Coburn B et al. 2015, Sep, 1. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung. MBio. 6(5): e00981—15. https://doi.org/10.1128/mBio.00981-15.

Gellatly L Shaan, Robert EW. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 67(3): 159—73. https://doi.org/10.1111/2049-632X.12033.

Sharma D, Kanneganti TD. 2016, Jun, 20. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 213(6): 617—29. https://doi.org/10.1083/jcb.201602089.

Yoon S, Kurnasov O, Natarajan V, Hong M et al. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science. 335: 859—64. https://doi.org/10.1126/science.1215584.

Sutterwala FS, Flavell RA. 2009. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 130(1): 2—6. https://doi.org/10.1016/j.clim.2008.08.011.

Xaplanteri P, Lagoumintzis G, Dimitracopoulos G, Paliogianni F. 2009. Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur J Immunol. 39(3): 730—40. https://doi.org/10.1002/eji.200838872.

Vinckx T, Wei Q, Matthijs S et al. 2010. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology. 156; Pt 3: 678—86. https://doi.org/10.1099/mic.0.031971-0.

Lagoumintzis G, Xaplanteri P, Dimitracopoulos G, Paliogianni F. 2008. TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4. Scand J Immunol. 67(2): 193—203. https://doi.org/10.1111/j.1365-3083.2007.02053.x.

Hwang EH, Kim TH, Oh SM et al. 2016. Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF) mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation. Cytokine. 77: 127—34. https://doi.org/10.1016/j.cyto.2015.11.010.

Pene F, Grimaldi D, Zuber B et al. 2012, Sep, 15. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction. J Infect Dis. 206(6): 932—42. https://doi.org/10.1093/infdis/jis438.

Liu X, Guan JH, Jiang BC et al. 2016. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C. Viral Immunol. 29(6): 322—31. https://doi.org/10.1089/vim.2016.0013.

Descamps D, Le Gars M, Balloy V et al. 2012, Jan, 31. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing. Proc Natl Acad Sci U S A. 109(5): 1619—24. https://doi.org/10.1073/pnas.1108464109.

Benmohamed F, Medina M, Wu YZ et al. 2014, Mar, 4. Toll-like receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection. PLoS One. 9(3): 90466. https://doi.org/10.1371/journal.pone.0090466.

Ioannidis I, Ye F, McNally B et al. 2013. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol. 87: 3261—3270. https://doi.org/10.1128/JVI.01956-12.

Vance RE. 2015. The NAIP/NLRC4 inflammasomes. Curr Opin Immunol. 32: 84—9. https://doi.org/10.1016/j.coi.2015.01.010.

Williams BJ, Dehnbostel J, Blackwell TS. 2010. Pseudomonas aeruginosa: host defence in lung diseases. Respirology. 15(7): 1037—56. https://doi.org/10.1111/j.1440-1843.2010.01819.x.

Wonnenberg B, Bischoff M, Beisswenger C et al. 2016. The role of IL-1β in Pseudomonas aeruginosa in lung infection. Cell Tissue Res. 364(2): 225—9. https://doi.org/10.1007/s00441-016-2387-9.

Paeng SH, Park WS, Jung WK et al. 2015. YCG063 inhibits Pseudomonas aeruginosa LPS-induced inflammation in human retinal pigment epithelial cells through the TLR2-mediated AKT/NF-κB pathway and ROS-independent pathways. Int J Mol Med. 36(3): 808—16. https://doi.org/10.3892/ijmm.2015.2266.

Zgurskaya HI, Lopez CA, Gnanakaran S. 2015. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect Dis. 1(11): 512—522. https://doi.org/10.1021/acsinfecdis.5b00097.

Zhao Y, Shao F. 2015. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev. 265(1): 85—102. https://doi.org/10.1111/imr.12293.

Загрузки

Выпуск

Раздел

Иммунология