DOI: https://doi.org/10.15574/SP.2016.78.60

Развитие иммунного ответа при пневмококковой пневмонии. Часть 3

A. E. Abaturov, Е. А. Agafonova, A. A. Nikulina

Аннотация


В статье показан неспецифический (фагоцитоз) и специфический Th1-, Th17-ассоциированный иммунный ответ при инфицировании Streptococcus pneumoniae. Дана характеристика фенотипов макрофагов респираторного тракта в инициации бактериального киллинга за счет генерации активных азотсодержащих метаболитов и нейтрофилов, обладающих протеолитической активностью за счет катепсина G, нейтрофильной эластазы и протеиназы 3. Продемонстрирована основная роль Th17-клеток в процессе саногенеза пневмококковой инфекции. Секретируемый данными клетками IL-17A рекрутирует профессиональные фагоциты (нейтрофилы или макрофаги) в регион колонизации, обуславливая подавление роста колонии Streptococcus pneumoniae. Th17-клетки памяти играют ключевую роль в обеспечении защиты от Streptococcus pneumoniae серотип-независимым способом, а расширение спектра действия антипневмококковых вакцин может быть основано на разработке методов активации Th17-клеток.


Ключевые слова:
пневмококковая пневмония, клеточные реакции, фагоцитоз, Th1 и Th17-ассоциированный иммунный ответ, антипневмококковые антитела.


Ключевые слова


пневмококковая пневмония; клеточные реакции; фагоцитоз; Th1 и Th17-ассоциированный иммунный ответ; антипневмококковые антитела

Полный текст:

PDF

Литература


Abaturov AE, Volosovets AP, Yulish EI. 2012. The induction of the molecular mechanisms of nonspecific protection of the respiratory tract. K. Private Drukarnya FD -II Storozhuk OV: 240

Marriott HM, Daigneault M, Thompson AA et al. 2012, Nov. A decoy receptor 3 analogue reduces localised defects in phagocyte function in pneumococcal pneumoniae. Thorax. 67(11): 985—92. https://doi.org/10.1136/thoraxjnl-2012-201591.

Pido-Lopez J, Kwok WW, Mitchell TJ et al. 2011, Dec. Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue. PLoS Pathog. 7(12): 1002396. https://doi.org/10.1371/journal.ppat.1002396.

Gray C, Ahmed MS, Mubarak A et al. 2014, May. Activation of memory Th17 cells by domain 4 pneumolysin in human nasopharynx-associated lymphoid tissue and its association with pneumococcal carriage. Mucosal Immunol. 7 (3): 705—17. https://doi.org/10.1038/mi.2013.89.

Aggarwal NR, King LS, D'Alessio FR. 2014, Apr. 15. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 306(8): 709—25. https://doi.org/10.1152/ajplung.00341.2013.

Simell B, Vuorela A, Ekstrom N et al. 2011, Feb. 24. Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine. 29(10): 1929—34. https://doi.org/10.1016/j.vaccine.2010.12.121.

Guilliams M, De Kleer I, Henri S et al. 2013, Sep. 23. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 210(10): 1977—92. https://doi.org/10.1084/jem.20131199.

Knapp S, Leemans JC, Florquin S et al. 2003, Jan. 15. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumoniae. Am J Respir Crit Care Med. 167(2): 171—9. https://doi.org/10.1164/rccm.200207-698OC.

Aberdein JD, Cole J, Bewley MA et al. 2013, Nov. Alveolar macrophages in pulmonary host defence the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing. Clin Exp Immunol. 174(2): 193—202. https://doi.org/10.1111/cei.12170.

Trzcinski K, Thompson C, Malley R, Lipsitch M. 2005, Oct. Antibodies to conserved pneumococcal antigens correlate with, but are not required for, protection against pneumococcal colonization induced by prior exposure in a mouse model. Infect. Immun. 73(10): 7043—6. https://doi.org/10.1128/IAI.73.10.7043-7046.2005.

Sharma SK, Roumanes D, Almudevar A et al. 2013, Jun 26. CD4+ T-cell responses among adults and young children in response to Streptococcus pneumoniae and Haemophilus influenzae vaccine candidate protein antigens. Vaccine. 31(30): 3090—7. https://doi.org/10.1016/j.vaccine.2013.03.060.

Zhang Q, Leong SC, McNamara PS et al. 2011, Aug. Characterisation of regulatory T cells in nasal associated lymphoid tissue in children: relationships with pneumococcal colonization. PLoS Pathog. 7(8): 1002175. https://doi.org/10.1371/journal.ppat.1002175.

Menter T, Giefing-Kroell C, Grubeck-Loebenstein B, Tzankov A. 2014. Characterization of the inflammatory infiltrate in Streptococcus pneumoniae pneumoniae in young and elderly patients. Pathobiology. 81(3): 160—7. https://doi.org/10.1159/000360165.

Marriott HM, Hellewell PG, Whyte MK, Dockrell DH. 2007, Mar. 22. Contrasting roles for reactive oxygen species and nitric oxide in the innate response to pulmonary infection with Streptococcus pneumoniae. Vaccine. 25(13): 2485—90. https://doi.org/10.1016/j.vaccine.2006.09.024.

Wang Y, Jiang B, Guo Y et al. 2016, Apr 27. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol. https://doi.org/10.1038/mi.2016.41.

Duan M, Li WC, Vlahos R et al. 2012, Jul 15. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol. 189(2): 946—55. https://doi.org/10.4049/jimmunol.1200660.

Dockrell DH, Whyte MK, Mitchell TJ. 2012, Aug. Pneumococcal pneumoniae: mechanisms of infection and resolution. Chest. 142(2): 482—91. https://doi.org/10.1378/chest.12-0210.

Wright AK, Bangert M, Gritzfeld JF et al. 2013, Mar. Experimental human pneumococcal carriage augments IL-17A-dependent T-cell defence of the lung. PLoS Pathog. 9(3): 1003274. https://doi.org/10.1371/journal.ppat.1003274.

Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury / W. J. Janssen, L. Barthel, A. Muldrow [et al.] // Am. J. Respir. Crit. Care Med. — 2011. — Sep 1. — Vol. 184 (5). — P. 547—60. https://doi.org/10.1164/rccm.201011-1891OC.

Goncalves MT, Mitchell TJ, Lord JM. 2015, Oct 15. Immune ageing and susceptibility to Streptococcus pneumoniae. Biogerontology. https://doi.org/10.1007/s10522-015-9614-8.

Groom JR, Luster AD. 2011, Feb. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 89(2): 207—15. https://doi.org/10.1038/icb.2010.158.

Netea MG, Simon A, van de Veerdonk F et al. 2010, Feb 26. IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog. 6(2). — P. 1000661. https://doi.org/10.1371/journal.ppat.1000661.

Marks M, Burns T, Abadi M et al. 2007, Apr. Influence of neutropenia on the course of serotype 8 pneumococcal pneumoniae in mice. Infect Immun. 75(4): 1586—97. https://doi.org/10.1128/IAI.01579-06.

Wang W, Zhou A, Zhang X et al. 2014, Jun. Interleukin 17A promotes pneumococcal clearance by recruiting neutrophils and inducing apoptosis through a p38 mitogen-activated protein kinase-dependent mechanism in acute otitis media. Infect Immun. 82(6): 2368—77. https://doi.org/10.1128/IAI.00006-14.

Kuranaga N, Kinoshita M, Kawabata T et al. 2006, Oct 1. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production. J Infect Dis. 194(7): 993—1002. https://doi.org/10.1086/507428.

Marriott HM, Gascoyne KA, Gowda R et al. 2012, Mar. Interleukin-1β regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intercellular cooperation between pulmonary epithelial cells and macrophages. Infect Immun. 80(3): 1140—9. https://doi.org/10.1128/IAI.05697-11.

Kim BJ, Lee S, Berg RE et al. 2013, Oct. Interleukin-23 (IL-23) deficiency disrupts Th17 and Th1-related defenses against Streptococcus pneumoniae infection. Cytokine. 64(1): 375—81. https://doi.org/10.1016/j.cyto.2013.05.013.

Joyce EA, Popper SJ, Falkow S. 2009, Aug 27. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics. 10: 404. https://doi.org/10.1186/1471-2164-10-404.

Robb CT, Regan KH, Dorward DA, Rossi AG. 2016, Apr 27. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. https://doi.org/10.1007/s00281-016-0560-6.

Jenkins SJ, Ruckerl D, Cook PC et al. 2011, Jun 10. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 332(6035): 1284—8. https://doi.org/10.1126/science.1204351.

Zhang Q, Bagrade L, Bernatoniene J et al. 2007, Apr 15. Low CD4 T cell immunity to pneumolysin is associated with nasopharyngeal carriage of pneumococci in children. J Infect Dis. 195(8): 1194—202. https://doi.org/10.1086/512617.

Arora M, Poe SL, Ray A, Ray P. 2011, Jul. LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol. 11(7): 827-32. https://doi.org/10.1016/j.intimp.2011.01.034.

Lundgren A, Bhuiyan TR, Novak D et al. 2012, Jun 6. Characterization of Th17 responses to Streptococcus pneumoniae in humans: comparisons between adults and children in a developed and a developing country. Vaccine. 30(26): 3897—907. https://doi.org/10.1016/j.vaccine.2012.03.082.

Bedoret D, Wallemacq H, Marichal T et al. 2009, Dec. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest. 119(12): 3723—38. https://doi.org/10.1172/JCI39717.

Malley R. 2010, Feb. Antibody and cell-mediated immunity to Streptococcus pneumoniae: implications for vaccine development. J Mol Med (Berl). 88(2): 135—42. https://doi.org/10.1007/s00109-009-0579-4.

Martin TR, Frevert CW. 2005. Innate immunity in the lungs. Proc Am Thorac Soc. 2(5): 403-11. https://doi.org/10.1513/pats.200508-090JS.

Dallaire F, Ouellet N, Bergeron Y et al. 2001, Aug 1. Microbiological and inflammatory factors associated with the development of pneumococcal pneumoniae. J Infect Dis. 184(3): 292-300. https://doi.org/10.1086/322021.

Jakubzick C, Gautier EL, Gibbings SL et al. 2013, Sep 19. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity. 39(3): 599-610. https://doi.org/10.1016/j.immuni.2013.08.007.

Mosser DM, Edwards JP. 2008, Dec. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8(12): 958—69. https://doi.org/10.1038/nri2448.

Okumura CY, Nizet V. 2014. Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol. 68: 439—58. https://doi.org/10.1146/annurev-micro-092412-155711.

Palomo J, Dietrich D, Martin P. 2015, Nov. The interleukin (IL)-1 cytokine family-Balance between agonists and antagonists in inflammatory diseases. Cytokine. 76(1): 25—37. https://doi.org/10.1016/j.cyto.2015.06.017.

Patel B, Gupta N, Ahsan F. 2015, Jan. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 89: 163—74. https://doi.org/10.1016/j.ejpb.2014.12.001.

Wilson R, Cohen JM, Jose RJ et al. 2015, May. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses. Mucosal Immunol. 8(3): 627—39. https://doi.org/10.1038/mi.2014.95.

Rathore JS, Wang Y. 2016, Mar 18. Protective role of Th17 cells in pulmonary infection. Vaccine. 34(13): 1504—14. https://doi.org/10.1016/j.vaccine.2016.02.021.

Yamamoto K, Ahyi AN, Pepper-Cunningham ZA et al. 2014, Feb. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumoniae. Am J Respir Cell Mol Biol. 50(2): 253-62. https://doi.org/10.1165/rcmb.2013-0114OC.

Sharma SK, Casey JR, Pichichero ME. 2011, Aug 15. Reduced memory CD4+ T-cell generation in the circulation of young children may contribute to the otitis-prone condition. J Infect Dis. 204(4): 645—53. https://doi.org/10.1093/infdis/jir340.

Yesilkaya H, Andisi VF, Andrew PW, Bijlsma JJ. 2013, Apr. Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals. Trends Microbiol. 21(4): 187—95. https://doi.org/10.1016/j.tim.2013.01.004.

Sоrensen OE, Borregaard N. 2016, May 2. Neutrophil extracellular traps — the dark side of neutrophils. J Clin Invest. 126(5): 1612—20. https://doi.org/10.1172/JCI84538.

Mureithi MW, Finn A, Ota MO et al. 2009, Sep 1. T cell memory response to pneumococcal protein antigens in an area of high pneumococcal carriage and disease. J Infect Dis. 200(5): 783-93. https://doi.org/10.1086/605023.

Murphy J, Summer R, Wilson AA et al. 2008, Apr. The prolonged life-span of alveolar macrophages. Am J Respir Cell Mol Biol. 38(4): 380—5. https://doi.org/10.1165/rcmb.2007-0224RC.

Timar CI, Lorincz AM, Ligeti E. 2013, Nov. Changing world of neutrophils. Pflugers Arch. 465(11): 1521—33. https://doi.org/10.1007/s00424-013-1285-1.

Ellis GT, Davidson S, Crotta S et al. 2015, Sep. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep. 16(9): 1203—18. https://doi.org/10.15252/embr.201540473.

Weber A, Wasiliew P, Kracht M. 2010, Jan 19. Interleukin-1 (IL-1) pathway. Sci Signal. 3(105): cm1. https://doi.org/10.1126/scisignal.3105cm1.

Zhang Z, Clarke TB, Weiser JN. 2009, Jul. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest. 119(7): 1899—909. https://doi.org/10.1172/JCI36731.

Zheng SG. 2013, Feb 27. Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive? Am J Clin Exp Immunol. 2(1): 94—106. PMid:23885327 PMCid:PMC3714204