Развитие иммунного ответа при пневмококковой пневмонии. Часть 2

Авторы

DOI:

https://doi.org/10.15574/SP.2016.77.54

Ключевые слова:

пневмококковая пневмония, иммунный ответ, цитокины, интерфероны

Аннотация

Статья посвящена изучению роли различных цитокинов (IL-1β, IL-6, IL-8, IL-10, IL-17, TNF-α, интерферонов I и II типов) в развитии воспалительного процесса при пневмококковой пневмонии. Представлена характеристика семейств интерлейкинов, хемокинов, интерферонов, участвующих в формировании адекватного воспалительного процесса и неспецифического иммунного ответа, направленного на элиминацию Streptococcus pneumoniae. Показано активное участие интерфероновой системы в антибактериальной защите (в рекогниции, процессинге, презентации антигена, трансдукции внутриклеточного сигнала, активации факторов транскрипции, продукции цитокинов).

Ключевые слова: пневмококковая пневмония, иммунный ответ, цитокины, интерфероны.

Библиографические ссылки

Abaturov AE, Volosovets AP, Yulish EI. 2012. Induktsiya molekulyarnyih mehanizmov nespetsificheskoy zaschityi respiratornogo trakta. Kiev, Privatna drukarnya FO-II Storozhuk O.V.: 240.

Abaturov AE. 2007. Sovremennyie predstavleniya o gomeostaze zheleza u cheloveka. Sovremennaya pediatriya. 1(14): 105—112.

Abaturov AE, Gerasimenko ON, Vyisochina IL, Zavgorodnyaya NYu. 2011. Defenzinyi i defenziv-zavisimyie zabolevaniya. Odessa, Izdatelstvo VMV: 266.

Pido-Lopez J, Kwok WW, Mitchell TJ et al. 2011. Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue. PLoS Pathog. 7(12): e1002396. http://dx.doi.org/10.1371/journal.ppat.1002396.

Arend WP, Palmer G, Gabay C. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 223: 20—38. http://dx.doi.org/10.1111/j.1600-065X.2008.00624.x.

Blouin CM, Lamaze С. 2013, Sep 3. Interferon gamma receptor: the beginning of the journey. Front Immunol. 4: 267. doi: 10.3389/fimmu. 2013.00267.

Brenner D, Blaser H, Mak TW. 2015. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 15(6): 362—74. http://dx.doi.org/10.1038/nri3834.

Cayrol C. Girard J. P. 2009, Jun 2. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 106(22): 9021—6. http://dx.doi.org/10.1073/pnas.0812690106.

Singh R, Singh S, Briles DE et al. 2012, Feb 1. CCL5-independent helper T lymphocyte responses to immuno-dominant pneumococcal surface protein A epitopes. Vaccine. 30(6): 1181-90. http://dx.doi.org/10.1016/j.vaccine.2011.12.020.

Cherayil BJ. 2015. Pathophysiology of Iron Homeostasis during Inflammatory States. J Pediatr. 167; Suppl 4: 15—9. doi: 10.1016/j.jpeds.2015.07.015.

Cole JN, Nizet V. 2016. Bacterial Evasion of Host Antimicrobial Peptide Defenses. Microbiol Spectr. 4(1). doi: 10.1128/microbiolspec.VMBF-0006-2015.

Couper KN, Blount DG, Riley EM. 2008, May 1. IL-10: the master regulator of immunity to infection. J Immunol. 180(9): 5771—7. http://dx.doi.org/10.4049/jimmunol.180.9.5771.

Chung Y, Chang SH, Martinez GJ et al. 2009, Apr 17. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 30(4): 576—87. http://dx.doi.org/10.1016/j.immuni.2009.02.007.

Decker T, Muller M, Stockinger S. 2005. The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol. 5(9): 675—87. http://dx.doi.org/10.1038/nri1684.

Hughes CE, Harvey RM, Plumptre CD et al. 2014. Development of primary invasive pneumococcal disease caused by serotype 1 pneumococci is driven by early increased type I interferon response in the lung. Infect Immun. 82(9): 3919—26. http://dx.doi.org/10.1128/IAI.02067-14.

Jeong DG, Jeong ES, Seo JH et al. 2011. Difference in Resistance to Streptococcus pneumoniae Infection in Mice. Lab Anim Res. 27(2): 91—8. http://dx.doi.org/10.5625/lar.2011.27.2.91.

Dinarello CA. 2010. IL-1: discoveries, controversies and future directions. Eur J Immunol. 40(3). — P. 599—606. http://dx.doi.org/10.1002/eji.201040319.

Dinarello CA. 2006. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 83(2): 447—455. PMID: 16470011.

Dinarello CA. 2005. The many worlds of reducing interleukin-1. Arthritis Rheum. 52(7): 1960—7. http://dx.doi.org/10.1002/art.21107.

Hatta M, Yamamoto N, Miyazato A et al. 2010. Early production of tumor necrosis factor-alpha by Gr-1 cells and its role in the host defense to pneumococcal infection in lungs. FEMS Immunol Med Microbiol. 58(2): 182—92. http://dx.doi.org/10.1111/j.1574-695X.2009.00616.x.

Saha B, Jyothi Prasanna S, Chandrasekar B, Nandi D. 2010. Gene modulation and immunoregulatory roles of interferon gamma. Cytokine. 50(1): 1—14. http://dx.doi.org/10.1016/j.cyto.2009.11.021.

Groom JR, Luster AD. 2011. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 89(2): 207—15. http://dx.doi.org/10.1038/icb.2010.158.

Gu C, Wu L, Li X. 2013. IL-17 family: cytokines, receptors and signaling. Cytokine. 64(2): 477—85. http://dx.doi.org/10.1016/j.cyto.2013.07.022.

Bode JG, Albrecht U, Haussinger D et al. 2012. Hepatic acute phase proteins — regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-kB-dependent signaling. Eur J Cell Biol. 91(6—7): 496—505. http://dx.doi.org/10.1016/j.ejcb.2011.09.008.

Michels K, Nemeth E, Ganz T, Mehrad B. 2015, Aug 20. Hepcidin and Host Defense against Infectious Diseases. PLoS Pathog. 11(8): e1004998. http://dx.doi.org/10.1371/journal.ppat.1004998.

Rodriguez R, Jung CL, Gabayan V et al. 2014. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 82(2): 745—52. http://dx.doi.org/10.1128/IAI.00983-13.

Hunter CA, Jones SA. 2015. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 16(5): 448—57. http://dx.doi.org/10.1038/ni.3153.

Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 Cells. Annu Rev Immunol. 27: 485—517. http://dx.doi.org/10.1146/annurev.immunol.021908.132710.

Lauw FN, Branger J, Florquin S et al. 2002, Jan 1. IL-18 improves the early antimicrobial host response to pneumococcal pneumoniae. J Immunol. 168(1): 372—8. http://dx.doi.org/10.4049/jimmunol.168.1.372.

Netea MG, Simon A, van de Veerdonk F et al. 2010, Feb 26. IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog. 6(2): e1000661. http://dx.doi.org/10.1371/journal.ppat.1000661.

Nemeth E, Rivera S, Gabayan V et al. 2004. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 113(9): 1271—6. http://dx.doi.org/10.1172/JCI200420945.

Rijneveld AW, Weijer S, Florquin S et al. 2004, Feb 15. Improved host defense against pneumococcal pneumoniae in platelet-activating factor receptor-deficient mice. J Infect Dis. 189(4): 711—6. http://dx.doi.org/10.1086/381392.

Parker D, Ahn D, Cohen T, Prince A. 2016. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev. 96(1): 19—53. http://dx.doi.org/10.1152/physrev.00009.2015.

Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ. 2009, Jan 37. INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res. Database issue: D852—7. http://dx.doi.org/10.1093/nar/gkn732.

Yamada M, Gomez JC, Chugh PE et al. 2011, May 15. Interferon- γ production by neutrophils during bacterial pneumoniae in mice. Am J Respir Crit Care Med. 183(10): 1391—401. http://dx.doi.org/10.1164/rccm.201004-0592OC.

Yang H, Ko HJ, Yang JY et al. 2013, Jan 1. Interleukin-1 promotes coagulation, which is necessary for protective immunity in the lung against Streptococcus pneumoniae infection. J Infect Dis. 207(1): 50—60. http://dx.doi.org/10.1093/infdis/jis651.

Abdalla AE, Lambert N, Duan X, Xie J. 2016. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci. 12(6): 710—7. http://dx.doi.org/10.7150/ijbs.13881.

Penaloza HF, Nieto PA, Munoz-Durango N et al. 2015. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology. 146(1): 100—12. http://dx.doi.org/10.1111/imm.12486.

Lu YJ, Gross J, Bogaert D et al. 2008, Sep 19. Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog. 4(9): e1000159. http://dx.doi.org/10.1371/journal.ppat.1000159.

Kuranaga N, Kinoshita M, Kawabata T et al. 2006, Oct 1. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production. J Infect Dis. 194(7): 993—1002. http://dx.doi.org/10.1086/507428.

Van Der Poll T, Keogh CV, Guirao X et al. 1997. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumoniae. J Infect Dis. 176: 439—444. http://dx.doi.org/10.1086/514062.

Joyce EA, Popper SJ, Falkow S. 2009, Aug 27. Streptococcus pneumoniae nasopharyngeal colonization induces type I interferons and interferon-induced gene expression. BMC Genomics. 10: 404. http://dx.doi.org/10.1186/1471-2164-10-404.

Kadioglu A, Andrew PW. 2004. The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol. 25(3): 143—9. http://dx.doi.org/10.1016/j.it.2003.12.006.

Albrecht LJ, Tauber SC, Merres J et al. 2016. Lack of Proinflammatory Cytokine Interleukin-6 or Tumor Necrosis Factor Receptor-1 Results in a Failure of the Innate Immune Response after Bacterial Meningitis. Mediators Inflamm. 2016: 7678542. http://dx.doi.org/10.1155/2016/7678542.

LaRock CN, Nizet V. 2015. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta. 1848; 11 Pt B: 3047—54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.

Lemon JK, Miller MR, Weiser JN. 2015. Sensing of interleukin-1 cytokines during Streptococcus pneumoniae colonization contributes to macrophage recruitment and bacterial clearance. Infect Immun. 83(8): 3204—12. http://dx.doi.org/10.1128/IAI.00224-15.

Jones MR, Simms BT, Lupa MM et al. 2005, Dec 1. Lung NF-kappaB activation and neutrophil recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumoniae. J Immunol. 175(11): 7530—5. http://dx.doi.org/10.4049/jimmunol.175.11.7530; PMid:16301661 PMCid:PMC2723739.

Ma K, Zhang H, Baloch Z. 2016, May 14. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review. Int J Mol Sci. 17(5): pii: E733. http://dx.doi.org/10.3390/ijms17050733.

Gomez JC, Yamada M, Martin JR et al. 2015. Mechanisms of interferon-γ production by neutrophils and its function during Streptococcus pneumoniae pneumoniae. Am J Respir Cell Mol Biol. 52(3): 349—64. http://dx.doi.org/10.1165/rcmb.2013-0316OC.

Tai KP, Kamdar K, Yamaki J et al. 2015. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun. 21(1): 17—29. doi:10.1177/175342591351478.

Wang E, Simard M, Ouellet N et al. 2000. Modulation of cytokines and chemokines, limited pulmonary vascular bed permeability, and prevention of septicemia and death with ceftriaxone and interleukin-10 in pneumococcal pneumoniae. J Infect Dis. 182(4): 1255—9. http://dx.doi.org/10.1086/315811.

Murugan V, Peck MJ. 2009. Signal transduction pathways linking the activation of alveolar macrophages with the recruitment of neutrophils to lungs in chronic obstructive pulmonary disease. Exp Lung Res. 35(6): 439—85. http://dx.doi.org/10.1080/01902140902759290; PMid:19842832.

Palomo J, Dietrich D, Martin P. 2015. The interleukin (IL)-1 cytokine family-Balance between agonists and antagonists in inflammatory diseases. Cytokine. 76(1): 25—37. http://dx.doi.org/10.1016/j.cyto.2015.06.017.

Van Der Poll T, Keogh CV, Buurman WA, Lowry SF. 1997. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumoniae in mice. Am J Respir Crit Care Med. 155: 603—608. http://dx.doi.org/10.1164/ajrccm.155.2.9032201.

Paterson GK, Orihuela CJ. 2010. Pneumococci: immunology of the innate host response. Respirology. 15(7): 1057—63. http://dx.doi.org/10.1111/j.1440-1843.2010.01814.x.

Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D. 2011. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin Microbiol Rev. 24(3): 557—91. http://dx.doi.org/10.1128/CMR.00008-11.

Schaaf BM, Boehmke F, Esnaashari H et al. 2003, Aug 15. Pneumococcal septic shock is associated with the interleukin-10-1082 gene promoter polymorphism. Am J Respir Crit Care Med. 168(4): 476—80. http://dx.doi.org/10.1164/rccm.200210-1164OC.

Tian X, Xu F, Lung WY et al. 2012. Poly I. C enhances susceptibility to secondary pulmonary infections by gram-positive bacteria. PLoS One. 7(9): e41879. http://dx.doi.org/10.1371/journal.pone.0041879.

Hoe E, Boelsen LK, Toh ZQ et al. 2015, Jun 12. Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children. PLoS One. 10(6): e0129199. http://dx.doi.org/10.1371/journal.pone.0129199.

Koedel U, Winkler F, Angele B et al. 2002. Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Ann Neurol. 51(3): 319—29. http://dx.doi.org/10.1002/ana.10103.

Kerr AR, Irvine JJ, Search JJ et al. 2002. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect Immun. 70(3): 1547—57. http://dx.doi.org/10.1128/IAI.70.3.1547-1557.2002.

Rijneveld AW, van den Dobbelsteen GP, Florquin S et al. 2002, Jan 1. Roles of interleukin-6 and macrophage inflammatory protein-2 in pneumolysin-induced lung inflammation in mice. J Infect Dis. 185(1): 123—6. http://dx.doi.org/10.1086/338008.

Salzman NH. 2010, Nov-Dec. Paneth cell defensins and the regulation of the microbiome: Detente at mucosal surfaces. Gut Microbes. 1(6): 401—406. doi: 10.4161/gmic.1.6.1407.

Schape F, Rose-John S. 2015. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26(5): 475—87. http://dx.doi.org/10.1016/j.cytogfr.2015.07.004.

Iovino F, Brouwer MC, et van de Beek D et al. 2013. Signalling or binding: the role of the platelet-activating factor receptor in invasive pneumococcal disease. Cell Microbiol. 15(6): 870—81. http://dx.doi.org/10.1111/cmi.12129.

Srivastava S, Salim N, Robertson MJ. 2010. Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem. 17(29): 3353—7. http://dx.doi.org/10.2174/092986710793176348.

Scharf S, Zahlten J, Szymanski K et al. 2012. Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium. Exp Lung Res. 38(2): 100—10. http://dx.doi.org/10.3109/01902148.2011.652802.

Huang J, Yu S, Ji C, Li J. 2015. Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis. 20(2): 210—5. http://dx.doi.org/10.1007/s10495-014-1061-5.

Sоrensen OE, Borregaard N. 2016, May 2. Neutrophil extracellular traps — the dark side of neutrophils. J Clin Invest. 126(5): 1612—20. http://dx.doi.org/10.1172/JCI84538.

Tanaka T, Narazaki M, Kishimoto T. 2014, Sep 4. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 6(10): a016295. http://dx.doi.org/10.1101/cshperspect.a016295.

Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007, Mar 1. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol. 178(5): 3143—52. http://dx.doi.org/10.4049/jimmunol.178.5.3143.

Rijneveld AW, Florquin S, Branger J et al. 2001, Nov 1. TNF-alpha compensates for the impaired host defense of IL-1 type I receptor-deficient mice during pneumococcal pneumoniae. J Immunol. 167(9): 5240—6. http://dx.doi.org/10.4049/jimmunol.167.9.5240.

Xu Q, Surendran N, Verhoeven D et al. 2015, Feb 18. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumoniae and correlates with phagocytosis by neutrophils during early pathogenesis. Vaccine. 33(8): 993—1000. http://dx.doi.org/10.1016/j.vaccine.2015.01.014.

Jeong DG, Seo JH, Heo SH et al. 2015. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae. Lab Anim Res. 31(2): 78—85. http://dx.doi.org/10.5625/lar.2015.31.2.78.

Yamamoto K, Ferrari JD, Cao Y et al. 2012, Sep 1. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumoniae. J Immunol. 189(5): 2450—9. http://dx.doi.org/10.4049/jimmunol.1200634.

Uematsu S, Akira S. 2007, May 25. Toll-like receptors and Type I interferons. J Biol Chem. 282(21): 15319—23. http://dx.doi.org/10.1074/jbc.R700009200.

Von Kockritz-Blickwede M, Blodkamp S, Nizet V. 2016, Mar 30. Interaction of Bacterial Exotoxins with Neutrophil Extracellular Traps: Impact for the Infected Host. Front Microbiol. 7: 402. http://dx.doi.org/10.3389/fmicb.2016.00402.

Weber A, Wasiliew P, Kracht M. 2010, Jan 19. Interleukin-1 (IL-1) pathway. Sci Signal. 3(105): cm1. http://dx.doi.org/10.1126/scisignal.3105cm1.

Werno AM, Anderson TP, Murdoch DR. 2012. Association between pneumococcal load and disease severity in adults with pneumoniae. J Med Microbiol. 61; Pt 8: 1129—35. http://dx.doi.org/10.1099/jmm.0.044107-0.

Zhang X, Rovin BH. 2013. Beyond anemia: hepcidin, monocytes and inflammation. Biol Chem. 394(2): 231—8. http://dx.doi.org/10.1515/hsz-2012-0217.

Zhang X, Rovin BH. 2010. Hepcidin expression by human monocytes in response to adhesion and pro-inflammatory cytokines. Biochim Biophys Acta. 1800(12): 1262—7. doi: 10.1016/j.bbagen. 2010.08.005.

Zhang Z, Clarke TB. 2009. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest. 119(7): 1899—909. http://dx.doi.org/10.1172/JCI36731.

Загрузки

Выпуск

Раздел

Иммунология