Развитие иммунного ответа при пневмококковой пневмонии (часть 1)

Авторы

DOI:

https://doi.org/10.15574/SP.2016.76.47

Ключевые слова:

пневмония, Streptococcus pneumoniae, дети, иммунный ответ, PRR, инфламмасома

Аннотация

В статье представлена роль пневмококковой инфекции в структуре острых бактериально ассоциированных заболеваний респираторного тракта у детей и механизмы формирования иммунного ответа, направленные на эрадикацию внеклеточного возбудителя. На основании анализа литературных источников дано современное представление о функционировании молекулярних механизмов рекогниции пневмококковых патоген-ассоциированных молекулярных структур и индукции внутриклеточных сигнальных путей возбуждения эффекторных клеток респіраторного тракта. Продемонстрировано, что для инициации воспалительного процесса при пневмококковой инфекции необходимо, как минимум, два сигнала, один из которых активирует образ-распознающие рецепторы, а второй обуславливает формирование и активацию инфламмасомы.


Ключевые слова: пневмония, Streptococcus pneumoniae, дети, иммунный ответ, PRR, инфламмасома.

Библиографические ссылки

Abaturov AE, Volosovets АР, Yulish EI. 2011. The initiation of the inflammatory process in viral and bacterial diseases, opportunities and prospects medical management. Har’kov, OOO "SAM": 392.

Abaturov AE, Agafonovа ЕА, Gerasimenko ON, Krivushа EL. 2012. Introduction to immunology of infection for pediatricians and general practitioners - family medicine. Kiev, OOO "Julia Print": 176.

Namazovа-Baranova LS, Kulichenko TV, Malakhov AE et al. 2012. Pneumococcal pneumonia in children: Lessons from everyday practice. Current Pediatrics. 11; 4: 65—72.

Harith SM, Sidorenko SV, Ruleva AA et al. 2011. The incidence of pneumococcal pneumonia and ear infections in young children (preliminary data). Current Pediatrics. 10; 6: 103—107.

Weinberger DM, Harboe ZB, Sanders EA et al. 2010. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin Infect Dis. 51(6): 692—9. http://dx.doi.org/10.1086/655828.

Agarwal V, Sroka M, Fulde M et al. 2014. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J Biol Chem. 289(22): 15833—44. http://dx.doi.org/10.1074/jbc.M113.530212.

O'Brien KL, Wolfson LJ, Watt JP et al. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 374(9693): 893—902. http://dx.doi.org/10.1016/S0140-6736(09)61204-6.

Calbo E, Garau J. 2010.Of mice and men: innate immunity in pneumococcal pneumonia. Int J Antimicrob Agents. 35(2): 107—13.

">http://dx.doi.org/10.1016/j.ijantimicag.2009.10.002.

Cao X. 2016. Self;regulation and cross;regulation of pattern;recognition receptor signalling in health and disease. Nat Rev Immunol. 16(1): 35—50.

">http://dx.doi.org/10.1038/nri.2015.8

Cassidy SK, O'Riordan MX. 2013. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel). 5(4): 618—36. http://dx.doi.org/10.3390/toxins5040618.

Chen G, Pedra JH. 2010. The inflammasome in host defense. Sensors (Basel). 10(1): 97—111. http://dx.doi.org/10.3390/s100100097.

Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. 2007, Feb. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 147(2): 227—35. http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x.

Draing C, Pfitzenmaier M, Zummo S et al. 2006. Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumonia. J Biol Chem. 281(45): 33849—59. http://dx.doi.org/10.1074/jbc.M602676200.

Knuefermann P, Baumgarten G, Koch A et al. 2007. CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir Res. 8: 72. http://dx.doi.org/10.1186/1465-9921-8-72.

Fang R, Tsuchiya K, Kawamura I et al. 2011. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. J Immunol. 187(9): 4890—9. http://dx.doi.org/10.4049/jimmunol.1100381.

Davis KM, Nakamura S, Weiser JN. 2011. Nod2 sensing of lysozyme;digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice. J Clin Invest. 121(9): 3666—76. http://dx.doi.org/10.1172/JCI57761.

Baral P, Batra S, Zemans RL et al. 2014. Divergent functions of Toll;like receptors during bacterial lung infections. Am J Respir Crit Care Med. 190(7): 722—32. http://dx.doi.org/10.1164/rccm.201406-1101PP.

Chimalapati S, Cohen JM, Camberlein E et al. 2012. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo. PLoS One. 7(7): e41393. http://dx.doi.org/10.1371/journal.pone.0041393.

Majewska-Szczepanik M, Yamamoto N, Askenase PW, Szczepanik M. 2014. Epicutaneous immunization with phosphorylcholine conjugated to bovine serum albumin (PC-BSA) and TLR9 ligand CpG alleviates pneumococcal pneumonia in mice. Pharmacol Rep. 66(4): 570—5. http://dx.doi.org/10.1016/j.pharep.2014.02.023.

Kang EH, Gebru E, Kim MH et al. 2009. EstA protein, a novel virulence factor of Streptococcus pneumoniae, induces nitric oxide and pro;inflammatory cytokine production in RAW 264.7 macrophages through NF-kappaB/MAPK. Microb Pathog. 47(4): 196—201. http://dx.doi.org/10.1016/j.micpath.2009.07.002.

Fitzgerald KA. 2010. NLR-containing inflammasomes: central mediators of host defense and inflammation. Eur J Immunol. 40(3): 595—8. http://dx.doi.org/10.1002/eji.201040331.

Dong J, Wang J, He Y et al. 2014. GHIP in Streptococcus pneumoniae is involved in antibacterial resistance and elicits a strong innate immune response through TLR2 and JNK/p38MAPK. FEBS J. 281(17): 3803—15. http://dx.doi.org/10.1111/febs.12903.

Griffith JW, Sokol CL, Luster AD. 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 32: 659—702. http://dx.doi.org/10.1146/annurev-immunol-032713-120145.

Imai Y, Kuba K, Neely GG et al. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 133(2): 235—49. http://dx.doi.org/10.1016/j.cell.2008.02.043.

Michaudel C, Couturier-Maillard A, Chenuet P et al. 2016. Inflammasome, IL-1 and inflammation in ozone-induced lung injury. Am J Clin Exp Immunol. 5(1): 33—40. PMid:27168953 PMCid:PMC4858604

Klein M, Obermaier B, Angele B et al. 2008. Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis. 198(7): 1028—36. http://dx.doi.org/10.1086/591626.

Clarke TB, Francella N, Huegel A, Weiser JN. 2011. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe. 9(5): 404—14. http://dx.doi.org/10.1016/j.chom.2011.04.012.

Grazioli S, Hamilton SJ, McKinnon ML et al. 2016. IRAK-4 deficiency as a cause for familial fatal invasive infection by Streptococcus pneumonia. Clin Immunol. 163: 14—6. http://dx.doi.org/10.1016/j.clim.2015.12.007.

Kedziora S, Slotwinski R. 2009. Molekularne mechanizmy towarzyszace rozpoznawaniu patogenu przez receptory wrodzonej odpornosci. Postepy Hig Med Dosw (online). 63: 30—38.

Kim YK, Shin JS, Nahm MH. 2016. NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J. 57(1): 5—14. http://dx.doi.org/10.3349/ymj.2016.57.1.5.

Liu J, Zhang H, Liu Y et al. 2007. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages. Biochem Biophys Res Commun. 362(3): 575—81. http://dx.doi.org/10.1016/j.bbrc.2007.07.157.

Koppe U, Suttorp N, Opitz B. 2012. Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol. 14(4): 460—6. http://dx.doi.org/10.1111/j.1462-5822.2011.01746.x.

Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Int Rev Immunol. 30(1): 16—34. http://dx.doi.org/10.3109/08830185.2010.529976.

LaRock CN, Nizet V. 2015. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta. 1848 (11 Pt B): 3047—54. http://dx.doi.org/10.1016/j.bbamem.2015.02.010.

LaRock CN, Nizet V. 2015. Inflammasome /IL-1β Responses to Streptococcal Pathogens. Front Immunol. 6: 518. http://dx.doi.org/10.3389/fimmu.2015.00518.

Latz E. 2010. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 22(1): 28—33. http://dx.doi.org/10.1016/j.coi.2009.12.004.

Lich JD, Ting JP. 2007. CATERPILLER (NLR) family members as positive and negative regulators of inflammatory responses. Proc Am Thorac Soc. 4(3): 263—6. http://dx.doi.org/10.1513/pats.200701-022AW; PMid:17607010 PMCid:PMC2647628.

Liu Q, Ding JL. 2016, Feb 10. The molecular mechanisms of TLR-signaling cooperation in cytokine regulation. Immunol Cell Biol. http://dx.doi.org/10.1038/icb.2016.18.

Mansur DS, Smith GL, Ferguson BJ. 2014. Intracellular sensing of viral DNA by the innate immune system. Microbes Infect. 16(12): 1002—12. http://dx.doi.org/10.1016/j.micinf.2014.09.010.

Marriott HM, Mitchell TJ, Dockrell DH. 2008. Pneumolysin: a double;edged sword during the host-pathogen interaction. Curr Mol Med. 8(6): 497—509. doi: 0.2174/156652408785747924.

McGuire VA, Arthur JS. 2015. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol. 6: 607. http://dx.doi.org/10.3389/fimmu.2015.00607.

Lucas R, Czikora I, Sridhar S et al. 2013. Mini-review: novel therapeutic strategies to blunt actions of pneumolysin in the lungs. Toxins (Basel). 5(7): 1244—60. http://dx.doi.org/10.3390/toxins5071244.

Mitchell TJ, Dalziel CE. 2014. The biology of pneumolysin. Subcell Biochem. 80: 145—60. doi: 10.1007/978-94-017-8881-6-8.

Ha UH, Lim JH, Kim HJ et al. 2008. MKP1 regulates the induction of MUC5AC mucin by Streptococcus pneumoniae pneumolysin by inhibiting the PAK4-JNK signaling pathway. J Biol Chem. 283(45): 30624—31. http://dx.doi.org/10.1074/jbc.M802519200.

Musher DM. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin Infect Dis. 14(4): 801—7. http://dx.doi.org/10.1093/clinids/14.4.801.

Van Lieshout MH, Scicluna BP, Florquin S, van der Poll T. 2014. NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia. Am J Respir Cell Mol Biol. 50(4): 699—712. http://dx.doi.org/10.1165/rcmb.2013-0015OC.

Motta V, Soares F, Sun T, Philpott DJ. 2015. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 95(1): 149—78. http://dx.doi.org/10.1152/physrev.00009.2014.

Parker D, Martin FJ, Soong G et al. 2011. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio. 2(3): e00016—11. http://dx.doi.org/10.1128/mBio.00016-11.

Picard C, von Bernuth H, Ku CL. 2007. Inherited human IRAK-4 deficiency: an update. Immunol Res. 38(1—3): 347—52. http://dx.doi.org/10.1007/s12026-007-0006-2; PMid:17917042.

Schmeck B, Huber S, Moog K et al. 2006. Pneumococci induced TLR- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 290(4): 730—737. http://dx.doi.org/10.1152/ajplung.00271.2005.

McNeela EA, Burke A, Neill DR et al. 2010. Pneumolysin activates the NLRP3 inflammasome and promotes proin-flammatory cytokines independently of TLR4. PLoS Pathog. 6(11): 1001191. http://dx.doi.org/10.1371/journal.ppat.1001191.

Price KE, Camilli A. 2009. Pneumolysin localizes to the cell wall of Streptococcus pneumonia. J Bacteriol. 191(7): 2163—8. http://dx.doi.org/10.1128/JB.01489-08.

Malley R, Henneke P, Morse SC et al. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA. 100(4): 1966—71. http://dx.doi.org/10.1073/pnas.0435928100.

Vissers M, Hartman Y, Groh L et al. 2014. Recognition of Streptococcus pneumoniae and muramyl dipeptide by NOD2 results in potent induction of MMP-9, which can be controlled by lipopolysaccharide stimulation. Infect Immun. 82(12): 4952—8. http://dx.doi.org/10.1128/IAI.02150-14.

Roers A, Hiller B, Hornung V. 2016. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity. 44(4): 39—54. http://dx.doi.org/10.1016/j.immuni.2016.04.002.

Hommes TJ, van Lieshout MH, van't Veer C et al. 2015. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD) 2 in Host Defense during Pneumococcal Pneumonia. PLoS One. 10(12): e0145138. http://dx.doi.org/10.1371/journal.pone.0145138.

Witzenrath M, Gutbier B, Hocke AC et al. 2006. Role of pneumolysin for the development of acute lung injury in pneumococcal pneumonia. Crit Care Med. 34(7): 1947—54. http://dx.doi.org/10.1097/01.CCM.0000220496.48295.A9; PMid:16715037

Dessing MC, Hirst RA, de Vos AF, van der Poll T. 2009. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One. 4(11): 7993. http://dx.doi.org/10.1371/journal.pone.0007993.

Fatykhova D, Rabes A, Machnik C et al. 2015. Serotype 1 and 8 Pneumococci Evade Sensing by Inflammasomes in Human Lung Tissue. PLoS One. 10(8): e0137108. http://dx.doi.org/10.1371/journal.pone.0137108.

Sorbara MT, Philpott DJ. 2011. Peptidoglycan: a critical activator of the mammalian immune system during infection and homeostasis. Immunol Rev. 243(1): 40—60. http://dx.doi.org/10.1111/j.1600-065X.2011.01047.x.

Storek KM, Monack DM. 2015. Bacterial recognition pathways that lead to inflammasome activation. Immunol Rev. 265(1): 112—29. http://dx.doi.org/10.1111/imr.12289.

Zhang H, Kang L, Yao H et al. 2016. Streptococcus pneumoniae Endopeptidase O (PepO) Elicits a Strong Innate Immune Response in Mice via TLR2 and TLR4 Signaling Pathways. Front Cell Infect Microbiol. 6: 23. http://dx.doi.org/10.3389/fcimb.2016.00023.

Agarwal V, Kuchipudi A, Fulde M et al. 2013. Streptococcus pneumoniae endopeptidase O (PepO) is a multifunctional plasminogen- and fibronectin-binding protein, facilitating evasion of innate immunity and invasion of host cells. J Biol Chem. 288(10): 6849—63. http://dx.doi.org/10.1074/jbc.M112.405530.

Schmeck B, Moog K, Zahlten J et al. 2006. Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1-dependent IL-8 release by lung epithelial BEAS-2B cells. Respir Res. 7: 98. http://dx.doi.org/10.1186/1465-9921-7-98.

N'Guessan PD, Hippenstiel S, Etouem MO et al. 2006. Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol. 290(6): 1131—8. http://dx.doi.org/10.1152/ajplung.00383.2005.

Koppe U, Hogner K, Doehn JM et al. 2012. Streptococcus pneumoniae stimulates a STING- and IFN regulatory factor 3-dependent type I IFN production in macrophages, which regulates RANTES production in macrophages, cocultured alveolar epithelial cells, and mouse lungs. J Immunol. 188(2): 811—7. http://dx.doi.org/10.4049/jimmunol.1004143.

Knippenberg S, Ueberberg B, Maus R et al. 2015. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax. 70(7): 636—46. http://dx.doi.org/10.1136/thoraxjnl-2014-206420.

Gisch N, Kohler T, Ulmer AJ et al. 2013. Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem. 288(22): 15654—67. http://dx.doi.org/10.1074/jbc.M112.446963.

Szulc-Dabrowska L, Gierynska M, Depczynska D et al. 2015. Limfocyty Th17 w zakazeniach bakteryjnych. Postepy Hig Med Dosw (online). 69: 398—417. http://dx.doi.org/10.5604/17322693.1147868

Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell. 140(6): 805-20. http://dx.doi.org/10.1016/j.cell.2010.01.022.

Witzenrath M, Pache F, Lorenz D et al. 2011. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol. 187(1): 34—40. http://dx.doi.org/10.4049/jimmunol.1003143.

Proell M, Riedl SJ, Fritz JH et al. 2008. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS One. 3(4): e2119. http://dx.doi.org/10.1371/journal.pone.0002119.

Tilg H, Moschen AR, Szabo G. 2016, Jan 16. Interleukin-1 and inflammasomes in ALD/AAH and NAFLD/NASH. Hepatology. http://dx.doi.org/10.1002/hep.28456.

Nguyen CT, Kim EH, Luong TT et al. 2015. TLR4 mediates pneumolysin-induced ATF3 expression through the JNK/p38 pathway in Streptococcus pneumoniae-infected RAW 264.7 cells. Mol Cells. 38(1): 58—64. http://dx.doi.org/10.14348/molcells.2015.2231.

Zahlten J, Steinicke R, Bertrams W et al. 2013. TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. Eur Respir J. 41(2): 384—91. http://dx.doi.org/10.1183/09031936.00196311.

Tomlinson G, Chimalapati S, Pollard T et al. 2014. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol. 193(7): 3736—45. http://dx.doi.org/10.4049/jimmunol.1401413.

Knapp S, Wieland CW, van't Veer C et al. 2004. Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J Immunol. 172(5): 3132—8. http://dx.doi.org/10.4049/jimmunol.172.5.3132.

Albiger B, Dahlberg S, Sandgren A et al. 2007. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Сell Microbiol. 9(3): 633—44. http://dx.doi.org/10.1111/j.1462-5822.2006.00814.x.

Lim JH, Stirling B, Derry J et al. 2007. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity. 27(2): 349—60. http://dx.doi.org/10.1016/j.immuni.2007.07.011.

LeMessurier KS, Hacker H, Chi L et al. 2013. Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung. PLoS Pathog. 9(11): 1003727. http://dx.doi.org/10.1371/journal.ppat.1003727.

Van der Poll T, Opal SM. 2009. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet. 374(9700): 1543—56. http://dx.doi.org/10.1016/S0140-6736(09)61114-4.

Van Rossum AM, Lysenko ES, Weiser JN. 2005. Host and bacterial factors contributing to the clearance of colonization by Streptococcus pneumoniae in a murine model. Infect Immun. 73(11): 7718—26. http://dx.doi.org/10.1128/IAI.73.11.7718-7726.2005.

Vanaja SK, Rathinam VA, Fitzgerald KA. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 25(5): 308—15. http://dx.doi.org/10.1016/j.tcb.2014.12.009.

Williams A, Flavell RA, Eisenbarth SC. 2010. The role of NOD-like Receptors in shaping adaptive immunity. Curr Opin Immunol. 22(1): 34—40. http://dx.doi.org/10.1016/j.coi.2010.01.004.

Zhang Z, Clarke TB, Weiser JN. 2009. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest. 119(7): 1899—909. http://dx.doi.org/10.1172/JCI36731.

Загрузки

Выпуск

Раздел

Иммунология